Heat transfer is a critical factor in the durability of gas turbine components, particularly in the first vane. An axisymmetric contour is sometimes used to contract the cross sectional area from the combustor to the first stage vane in the turbine. Such contouring can lead to significant changes in the endwall flows, thereby altering the heat transfer. This paper investigates the effect of axisymmetric contouring on the endwall heat transfer of a nozzle guide vane. Heat transfer measurements are performed on the endwalls of a planar and contoured passage whereby one endwall is modified with a linear slope in the case of the contoured passage. Included in this study is upstream leakage flow issuing from a slot normal to the inlet axis. Each of the endwalls within the contoured passage presents a unique flow field. For the contoured passage, the flat endwall is subject to an increased acceleration through the area contraction, while the contoured endwall includes both increased acceleration and a turning of streamlines due to the slope. Results indicate heat transfer is reduced on both endwalls of the contoured passage relative to the planar passage. In the case of all endwalls, increasing leakage mass flow rate leads to an increase in heat transfer near the suction side of the vane leading edge.

1.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
, 2010, “
Effects of a Sloped Endwall on a Nozzle Guide Vane: Heat Transfer Measurements
,” Paper No. GT2010-22968.
2.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
, 2008, “
Measurements of Secondary Losses in a Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,” Paper No. GT2008-51311.
3.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
, 2007, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,” Paper No. GT2007-27579.
4.
Gustafson
,
R.
,
Mahmood
,
G.
, and
Acharya
,
S.
, 2007, “
Aerodynamic Measurements in a Linear Turbine Passage With Three-Dimensional Endwall Contouring
,” Paper No. GT2007-28073.
5.
Gustafson
,
R.
,
Mahmood
,
G.
, and
Acharya
,
S.
, 2007, “
Flowfield in a Film-Cooled Three-Dimensional Contoured Endwall Passage: Aerodynamic Measurements
,” Paper No. GT2007-28154.
6.
Mahmood
,
G. I.
,
Gustagson
,
R.
, and
Acharya
,
S.
, 2009, “
Flow Dynamics and Film Cooling Effectiveness on a Non-Axisymmetric Contour Endwall in a Two Dimensional Cascade Passage
,” Paper No. GT2009-60236.
7.
Saha
,
A. K.
, and
Acharya
,
S.
, 2008, “
Computations of Turbulent Flow and Heat Transfer Through a Three-Dimensional Nonaxisymmetric Blade Passage
,”
ASME J. Turbomach.
0889-504X,
130
, p.
031008
.
8.
Mahmood
,
G. I.
, and
Acharya
,
S.
, 2007, “
Measured Endwall Flow and Passage Heat Transfer in a Linear Blade Passage With Endwall and Leading Edge Modifications
,” Paper No. GT2007-28179.
9.
Lynch
,
S. P.
,
Sundaram
,
N.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
, 2009, “
Heat Transfer for a Turbine Blade With Non-Axisymmetric Endwall Contouring
,” Paper No. GT2009-60185.
10.
Morris
,
A. W. H.
, and
Hoare
,
R. G.
, 1975, “
Secondary Loss Measurements in a Cascade of Turbine Blades With Meridional Wall Profiling
,” Paper No. 75-WA/GT-13.
11.
Kopper
,
F. C.
,
Milano
,
R.
, and
Vanco
,
M.
, 1980, “
An Experimental Investigation of Endwalls Profiling in a Turbine Vane Cascade
,” AIAA Paper No. 80-1089.
12.
Boletis
,
E.
, 1985, “
Effects of Tip Endwall Contouring on the Three-Dimensional Flow Field in an Annular Turbine Nozzle Guide Vane: Part 1—Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
983
990
.
13.
Dossena
,
V.
,
Perdichizzi
,
A.
, and
Savini
,
M.
, 1999, “
The Influence of Endwall Contouring on the Performance of a Turbine Nozzle Guide Vane
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
200
208
.
14.
Lin
,
Y. -L.
,
Shih
,
T. I.-P.
, and
Simon
,
T. W.
, 2000, “
Control of Secondary Flows in a Turbine Nozzle Guide Vane by Endwall Contouring
,” Paper No. GT2000-556.
15.
Lin
,
Y. -L.
,
Shih
,
T. I.-P.
,
Chyu
,
M. K.
, and
Bunker
,
R. S.
, 2000, “
Effects of Gap Leakage on Fluid Flow in a Contoured Turbine Nozzle Guide Vane
,” Paper No. GT2000-555.
16.
Barigozzi
,
G.
,
Franchini
,
G.
,
Perdichizzi
,
A.
, and
Quattrore
,
M.
, 2008, “
Endwall Film Cooling Effects on Secondary Flows in a Contoured Endwall Nozzle Vane
,” Paper No. GT2008-51065.
17.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2005, “
Heat Transfer Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,” Paper No. HT2005-72573.
18.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2007, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring, Misalignment and Leakage Studies
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
782
790
.
19.
Lin
,
Y. -L.
, and
Shih
,
T. I.-P.
, 2000, “
Flow and Heat Transfer in a Turbine Nozzle Guide Vane With Endwall Contouring
,” Paper No. AIAA-2000-3002.
20.
FLUENT, Version 6.2.1, Fluent Inc., Lebanon, NH.
21.
Hermanson
,
K.
, and
Thole
,
K. A.
, 2000, “
Effect of Inlet Profiles on Endwall Secondary Flows
,”
J. Propul. Power
0748-4658,
16
, pp.
286
296
.
22.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2003, “
Computational Predictions of Endwall Film-Cooling for a First Stage Vane
,” Paper No. GT2003-38252.
23.
Kang
,
M. B.
, and
Thole
,
K. A.
, 2000, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
458
466
.
24.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
558
568
.
25.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
26.
Kost
,
F.
, and
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aerodynamic Measurements
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
709
719
.
27.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
720
729
.
28.
Kost
,
F.
, and
Mullaert
,
A.
, 2006, “
Migration of Film-Coolant From Slot and Hole Ejection at a Turbine Vane Endwall
,” Paper No. GT2006-90355.
You do not currently have access to this content.