Three-dimensional contouring of the compressor and turbine endwalls in a gas turbine engine has been shown to be an effective method of reducing aerodynamic losses by mitigating the strength of the complex vortical structures generated at the endwall. Reductions in endwall heat transfer in the turbine have been also previously measured and reported in literature. In this study, computational fluid dynamics simulations of a turbine blade with and without nonaxisymmetric endwall contouring were compared to experimental measurements of the exit flowfield, endwall heat transfer, and endwall film-cooling. Secondary kinetic energy at the cascade exit was closely predicted with a simulation using the SST k-ω turbulence model. Endwall heat transfer was overpredicted in the passage for both the SST k-ω and realizable k-ε turbulence models, but heat transfer augmentation for a nonaxisymmetric contour relative to a flat endwall showed fair agreement to the experiment. Measured and predicted film-cooling results indicated that the nonaxisymmetric contouring limits the spread of film-cooling flow over the endwall depending on the interaction of the film with the contour geometry.

1.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D.
, 2000, “
Non-Axisymmetric Turbine End Wall Design: Part I—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
278
285
.
2.
Hartland
,
J.
,
Gregory-Smith
,
D.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
, 2000, “
Non-Axisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
286
293
.
3.
Nagel
,
M. G.
, and
Baier
,
R. D.
, 2005, “
Experimentally Verified Numerical Optimization of a Three-Dimensional Parameterized Turbine Vane With Nonaxisymmetric Endwalls
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
380
387
.
4.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Scheupbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M.
, 2008, “
Improving Efficiency of a High-Work Turbine Using Non-Axisymmetric Endwalls Part I: Endwall Design and Performance
,”
ASME
Paper No. GT2008-50469.
5.
Scheupbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
, 2008, “
Improving Efficiency of a High-Work Turbine Using Non-Axisymmetric Endwalls Part II: Time-Resolved Flow Physics
,”
ASME
Paper No. GT2008-50470.
6.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. Z.
, and
Sjolander
,
S. A.
, 2007, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Airfoils
,”
ASME
Paper No. GT2007-27579.
7.
Knezevici
,
D. Z.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
, 2010, “
Measurements of Secondary Losses in a Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME J. Turbomach.
0889-504X,
132
, p.
011013
.
8.
Knezevici
,
D. Z.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
, 2009, “
Measurements of Secondary Losses in a High-Lift Front-Loaded Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2009-59677.
9.
Saha
,
A. K.
, and
Acharya
,
S.
, 2008, “
Computations of Turbulent Flow and Heat Transfer Through a Three-Dimensional Nonaxisymmetric Blade Passage
,”
ASME J. Turbomach.
0889-504X,
130
, p.
031008
.
10.
Mahmood
,
G. I.
, and
Acharya
,
S.
, 2007, “
Measured Endwall Flow and Passage Heat Transfer in a Linear Blade Passage With Endwall and Leading Edge Modifications
,”
ASME
Paper No. GT2007-28179.
11.
Lynch
,
S. P.
,
Sundaram
,
N.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
, 2009, “
Heat Transfer for a Turbine Blade With Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2009-60185.
12.
Okita
,
Y.
, and
Nakamata
,
C.
, 2008, “
Computational Predictions of Endwall Film Cooling for a Turbine Nozzle Vane With an Asymmetric Contoured Passage
,”
ASME
Paper No. GT2008-50878.
13.
Gustafson
,
R.
,
Mahmood
,
G. I.
, and
Acharya
,
S.
, 2007, “
Flowfield in a Film-Cooled Three-Dimensional Endwall Passage: Aerodynamic Measurements
,”
ASME
Paper No. GT2007-28154.
14.
Mahmood
,
G. I.
,
Gustafson
,
R.
, and
Acharya
,
S.
, 2009, “
Flow Dynamics and Film Cooling Effectiveness on a Non-Axisymmetric Contour Endwall in a Two-Dimensional Cascade Passage
,”
ASME
Paper No. GT2009-60236.
15.
ANSYS FLUENT, 2009, version 12.0.16, ANSYS Inc., Canonsburg, PA.
16.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
17.
Schwänen
,
M.
, and
Duggleby
,
A.
, 2009, “
Identifying Inefficiencies in Unsteady Pin-Fin Heat Transfer
,”
ASME
Paper No. GT2009-60219.
18.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
, 2009, “
The Application of Non-Axisymmetric Endwall Contouring in a Single-Stage Rotating Turbine
,”
ASME
Paper No. GT2009-59169.
19.
Shih
,
T. -H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
0045-7930,
24
(
3
), pp.
227
238
.
20.
Harrison
,
K. L.
, and
Bogard
,
D. G.
, 2008, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
ASME
Paper No. GT2008-51423.
21.
Yang
,
H.
,
Acharya
,
S.
,
Ekkad
,
S.
,
Prakash
,
C.
, and
Bunker
,
R.
, 2002, “
Flow and Heat Transfer Predictions for a Flat-Tip Turbine Blade
,”
ASME
Paper No. GT2002-30190.
22.
Hermanson
,
K.
,
Kern
,
S.
,
Picker
,
G.
, and
Parneix
,
S.
, 2003, “
Predictions of External Heat Transfer for Turbine Vanes and Blades With Secondary Flowfields
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
107
113
.
23.
ANSYS ICEM CFD, 2009, version 11.0, ANSYS Inc., Canonsburg, PA.
24.
Crawford
,
M. E.
, 2009, TEXSTAN (academic version), University of Texas, Austin, TX.
25.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1980,
Convective Heat and Mass Transfer
,
2nd ed.
,
McGraw-Hill
,
New York
, pp.
216
217
.
26.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, 2001, “
Turbine Separation Control Using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
198
206
.
27.
McAuliffe
,
B. R.
, and
Sjolander
,
S. A.
, 2004, “
Active Flow Control Using Steady Blowing for a Low-Pressure Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
560
569
.
28.
Popovic
,
I.
,
Zhu
,
J.
,
Dai
,
W.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
, and
Grover
,
E. A.
, 2006, “
Aerodynamics of a Family of Three Highly Loaded Low-Pressure Turbine Airfoils: Measured Effects of Reynolds Number and Turbulence Intensity in Steady Flow
,”
ASME
Paper No. GT2006-91271.
29.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
, 2007, “
Comparative Investigation of Three Highly-Loaded LP Turbine Airfoils: Part I—Measured Profile and Secondary Losses at Design Incidence
,”
ASME
Paper No. GT2007-27537.
30.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
31.
Cleak
,
J. G. E.
, and
Gregory-Smith
,
D. G.
, 1992, “
Turbulence Modeling for Secondary Flow Prediction in a Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
590
598
.
32.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
102
112
.
33.
Bogard
,
D. G.
, and
Thole
,
K. A.
, 2006, “
Gas Turbine Film Cooling
,”
J. Propul. Power
0748-4658,
22
(
2
), pp.
249
270
.
34.
Na
,
S.
,
Zhu
,
B.
,
Bryden
,
M.
, and
Shih
,
T. I-P.
, 2006, “
CFD Analysis of Film-Cooling
,” AIAA Paper No. AIAA2006-0022.
You do not currently have access to this content.