Turbine vanes are generally manufactured as single- or double-airfoil sections that are assembled into a full turbine disk. The gaps between the individual sections, as well as a gap between the turbine disk and the combustor upstream, provide leakage paths for relatively higher-pressure coolant flows. This leakage is intended to prevent ingestion of the hot combustion flow in the primary gas path. At the vane endwall, this leakage flow can interfere with the complex vortical flow present there and thus affect the heat transfer to that surface. To determine the effect of leakage flow through the gaps, heat transfer coefficients were measured along a first-stage vane endwall and inside the midpassage gap for a large-scale cascade with a simulated combustor-turbine interface slot and a midpassage gap. For increasing combustor-turbine leakage flows, endwall surface heat transfer coefficients showed a slight increase in heat transfer. The presence of the midpassage gap, however, resulted in high heat transfer near the passage throat where flow is ejected from that gap. Computational simulations indicated that a small vortex created at the gap flow ejection location contributed to the high heat transfer. The measured differences in heat transfer for the various midpassage gap flowrates tested did not appear to have a significant effect.

1.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2003, “
Computational Predictions of Endwall Film-Cooling for a First-Stage Vane
,”
ASME
Paper No. GT2003-38252.
2.
Lynch
,
S. P.
, and
Thole
,
K. A.
, 2008, “
The Effect of Combustor-Turbine Interface Gap Leakage on the Endwall Heat Transfer for a Nozzle Guide Vane
,”
ASME J. Turbomach.
0889-504X,
130
, p.
041019
.
3.
Rehder
,
H. -J.
, and
Dannhauer
,
A.
, 2007, “
Experimental Investigation of Turbine Leakage Flows on the Three-Dimensional Flow Field and Endwall Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
608
618
.
4.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
, 2000, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
651
658
.
5.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
, 2007, “
The Interaction of Turbine Inter-Platform Leakage Flow With the Mainstream Flow
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
303
310
.
6.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
, 2006, “
Reducing the Performance Penalty Due to Turbine Inter-Platform Gaps
,”
ASME
Paper No. GT2006-90839.
7.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2005, “
Flow Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,”
ASME
Paper No. GT2005-68340.
8.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2005, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,”
ASME
Paper No. HT2005-72573.
9.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2006, “
Adiabatic Effectiveness Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring, Leakage, and Assembly Features
,”
ASME
Paper No. GT2006-90576.
10.
Ranson
,
W. W.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
, 2005, “
Adiabatic Effectiveness Measurements and Predictions of Leakage Flows Along a Blade Endwall
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
609
618
.
11.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2006, “
Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
62
70
.
12.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2007, “
The Effects of Varying the Combustor-Turbine Gap
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
756
764
.
13.
Hada
,
S.
, and
Thole
,
K. A.
, 2006, “
Computational Study of a Midpassage Gap and Upstream Slot on Vane Endwall Film-Cooling
,”
ASME
Paper No. GT2006-91067.
14.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
558
568
.
15.
Radomsky
,
R. W.
, and
Thole
,
K. A.
, 2000, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
255
262
.
16.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
, 2002,
Fundamentals of Fluid Mechanics
,
4th ed.
,
Wiley
,
New York
, p.
514
.
17.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
18.
FLUENT (version 6.3.26), Fluent Inc., Lebanon, NH.
19.
Hermanson
,
K.
, and
Thole
,
K. A.
, 2000, “
Effect of Inlet Profiles on Endwall Secondary Flows
,”
J. Propul. Power
0748-4658,
16
, pp.
286
296
.
You do not currently have access to this content.