The necessity of performing an unsteady simulation for the purpose of predicting the heat transfer on the endwall surfaces of a turbine passage is addressed. This is measured by the difference between the two solutions obtained from a steady simulation and the time average of an unsteady simulation. The heat transfer coefficient (Nusselt number) based on the adiabatic wall temperature is used as the basis of the comparison. As there is no film cooling in the proposed case, a computed heat transfer coefficient should be a better measure of such difference than, say, a wall heat flux. Results show that the effect of unsteadiness due to wake passage on the pressures and recovery temperatures on both hub and casing is negligible. Heat transfer on the endwalls, however, is affected by the unsteady wake; the time-averaged results yield higher heat transfer; in some regions, up to 15% higher. The results for the endwall heat transfer were compared with results in open literature and were found to be comparable.

1.
Langston
,
L. S.
,
Nice
,
L. M.
, and
Hooper
,
R. M.
, 1976, “
Three Dimensional Flow Within a Turbine Cascade Passage
,” ASME Paper No. 76-GT-50.
2.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
, 1988, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
1
8
.
3.
Sieverding
,
C. H.
, 1985, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
248
257
.
4.
Langston
,
L. S.
, 2001, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
0077-8923,
22
, pp.
11
26
.
5.
Simon
,
T. W.
, and
Piggush
,
J. D.
, 2006, “
Turbine Endwall Aerodynamics and Heat Transfer
,”
J. Propul. Power
0748-4658,
22
, pp.
301
312
.
6.
Boyle
,
R. J.
,
Haas
,
J. E.
, and
Katsanis
,
T.
, 1985, “
Predicted Turbine Stage Performance Using Quasi-Three-Dimensional and Boundary Layer Analyses
,”
J. Propul. Power
0748-4658,
1
, pp.
242
251
.
7.
Mayle
,
R. E.
, and
Metzger
,
D. E.
, 1982, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Proceedings of the Seventh International Heat Transfer Conference
,
Hemisphere
,
Washington, D.C.
, pp.
87
92
.
8.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
, 1989, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Lubr. Technol.
0022-2305,
111
, pp.
73
79
.
9.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
, 1989, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
131
138
.
10.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A.
, 2000, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 1—Experimental Results
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
263
271
.
11.
Azad
,
G.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R.
, 2000, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
717
724
.
12.
Azad
,
G.
,
Han
,
J. C.
, and
Boyle
,
R.
, 2000, “
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
725
732
.
13.
Azad
,
G.
,
Han
,
J. C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 2002, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
452
459
.
14.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficients on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
669
677
.
15.
Nasir
,
H.
,
Ekkad
,
S.
,
Kontrovitz
,
D.
,
Bunker
,
R.
, and
Prakash
,
C.
, 2004, “
Effect of Tip Gap and Squealer Geometry on Detailed Heat Transfer Measurements Over a High Pressure Turbine Rotor Blade Tip
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
221
228
.
16.
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2004, “
Heat-Transfer Measurements and Predictions for the Vane and Blade of a Rotating High-Pressure Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
101
109
.
17.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
, 2003, “
Turbine Tip and Shroud Heat Transfer and Loading—Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas-to-Metal Temperature Ratio
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
97
106
.
18.
Ameri
,
A.
, and
Bunker
,
R.
, 2000, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine: Part 2—Simulation Results
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
272
277
.
19.
El-Gabry
,
L.
, 2007, “
Numerical Modeling of Heat Transfer on a Gas Turbine Blade Tip: Effect of Tip Clearance and Tip Geometry
,” ASME Paper No. GT2007-27008.
20.
Tolpadi
,
A.
,
Tallman
,
J.
, and
El-Gabry
,
L.
, 2005, “
Turbine Airfoil Heat Transfer Predictions Using CFD
,” ASME Paper No. GT2005-68051.
21.
Tallman
,
J. A.
,
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Tolpadi
,
A. K.
, and
Bergholz
,
R. F.
, 2006, “
Heat Transfer Measurements and Predictions for a Modern High Pressure, Transonic Turbine, Including Endwalls
,” ASME Paper No. GT2006-90927.
22.
Polanka
,
M. D.
,
Clark
,
J. P.
,
White
,
A. L.
,
Meininger
,
M.
, and
Praisner
,
T. J.
, 2003, “
Turbine Tip and Shroud Heat Transfer and Loading Part B: Comparison Between Prediction and Experiment Including Unsteady Effects
,” ASME Paper No. GT2003-38916.
23.
Pullman
,
G.
, 2004, “
Secondary Flows and Loss Caused by Blade Row Interaction in a Turbine Stage
,” ASME Paper No. GT2004-53743.
24.
Ameri
,
A. A.
,
Rigby
,
D. L.
,
Steinthorsson
,
E.
,
Heidmann
,
J.
, and
Fabian
,
J. C.
, 2006, “
Effects of Unsteadiness Due to Wake Passing on Rotor Blade Heat Transfer
,” Paper No. AIAA-2006-3263.
25.
Ameri
,
A. A.
,
Rigby
,
D. L.
,
Steinthorsson
,
E.
,
Heidmann
,
J.
, and
Fabian
,
J. C.
, 2007, “
Unsteady Turbine Blade and Tip Heat Transfer Due to Wake Passing
,” ASME Paper No. GT2007-27550.
26.
Ameri
,
A. A.
,
Rigby
,
D. L.
,
Steinthorsson
,
E.
,
Heidmann
,
J.
, and
Fabian
,
J. C.
, 2008, “
Unsteady Analysis of Blade and Tip Heat Transfer as Influenced by Upstream Momentum and Thermal Wakes
,” ASME Paper No. GT2008-51242.
27.
Ameri
,
A. A.
, and
El-Gabry
,
L.
, 2008, “
Computation of Unsteady Heat Transfer on the Casing of a Turbine Blade
,”
Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Paper No. ISROMAC12-2008-20191.
28.
El-Gabry
,
L.
, and
Ameri
,
A.
, 2008, “
Computation of Unsteady Heat Transfer on the Casing of a Turbine Blade: Effect of Inlet Total Temperature Wake
,”
Proceedings of the Ninth International Congress on Fluid Dynamics and Propulsion
, Paper No. ICFDP9-EG-234.
29.
Epstein
,
A. H.
,
Guenette
,
G. R.
,
Norton
,
R. J. G.
, and
Yuzhang
,
C.
, 1985, “
Time Resolved Measurements of a Turbine Rotor Stationary Tip Casing Pressure and Heat Transfer Field
,” AIAA Paper No. 85-1220.
30.
Thorpe
,
S. J.
,
Miller
,
R. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2005, “
The Effect of Work Processes on the Casing Heat Transfer of a Transonic Turbine
,” ASME Paper No. GT2005-68437.
31.
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
, 2006, “
The Effects of Blade Passing on the Heat Transfer Coefficient of the Over-Tip Casing in a Transonic Turbine Stage
,” ASME Paper No. GT2006-90534.
32.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D.
, 1998, “
Effect of Squealer Tips on Rotor Heat Transfer and Efficiency
,”
ASME J. Turbomach.
0889-504X,
120
(
4
), pp.
753
759
.
33.
Wilcox
,
D. C.
, 1994, “
Simulation of Transition With a Two-Equation Turbulence Model
,”
AIAA J.
0001-1452,
32
(
2
), pp.
247
255
.
You do not currently have access to this content.