The discrete-element model for flows over rough surfaces considers the heat transferred from a rough surface to be the sum of the heat convected from the flat surface and the heat convected from the individual roughness elements to the fluid. In previous discrete-element model developments, heat transfer experiments were performed using metallic or high-thermal conductivity roughness elements. Many engineering applications, however, exhibit roughness with low thermal conductivities. In the present study, the discrete-element model is adapted to consider the effects of finite thermal conductivity of roughness elements on turbulent convective heat transfer. Initially, the boundary-layer equations are solved while the fin equation is simultaneously integrated so that the full conjugate heat transfer problem is solved. However, a simpler approach using a fin efficiency is also investigated. The results of the conjugate analysis and the simpler fin efficiency analysis are compared to experimental measurements for turbulent flows over ordered cone surfaces. Possibilities for extending the fin efficiency method to randomly rough surfaces and the experimental measurements required are discussed.

1.
Bons
,
J. P.
,
Taylor
,
R.
,
McClain
,
S.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
739
748
.
2.
Taylor
,
R. P.
, 1990, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
112
(
2
), pp.
175
180
.
3.
Tarada
,
F.
, and
Suzuki
,
M.
, 1993, “
External Heat Transfer Enhancement to Turbine Blading due to Surface Roughness
,” ASME Paper No. 93-GT-74.
4.
Taylor
,
R. E.
, 1998, “
Thermal Conductivity Determinations of Thermal Barrier Coatings
,”
Mater. Sci. Eng., A
0921-5093,
245
, pp.
160
167
.
5.
Schultz
,
U.
,
Leyens
,
C.
,
Fritscher
,
K.
,
Peters
,
M.
,
Saruhan-Brings
,
B.
,
Livinge
,
O.
,
Dorvaux
,
J. -M.
,
Poulain
,
M.
,
Mevrel
,
R.
, and
Caliez
,
M.
, 2003, “
Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings
,”
Aerosp. Sci. Technol.
1270-9638,
7
, pp.
73
80
.
6.
Almeida
,
D. S.
,
Silva
,
C. R. M.
,
Nono
,
M. C. A.
, and
Cairo
,
C. A. A.
, 2007, “
Thermal Conductivity Investigation of Zirconia Co-doped With Yttria and Niobia EB-PVD TBCs
,”
Mater. Sci. Eng., A
0921-5093,
443
, pp.
60
65
.
7.
ASM International
, 1990,
Metals Handbook: Properties and Selection: Irons, Steels, and High Performance Alloys
, 10th ed.,
ASM International
,
Materials Park, OH
.
8.
Lu
,
M. -H.
, and
Liou
,
W. W.
, 2007, “
Assessment of Two Low-Reynolds-Number k−ε Models in Turbulent Boundary Layers With Surface Roughness
,”
J. Spacecr. Rockets
0022-4650,
44
(
6
), pp.
1307
1316
.
9.
Aupoix
,
B.
, and
Spalart
,
P. R.
, 2003, “
Extension of the Spalart-Allmaras Turbulence Model to Account for Wall Roughness
,”
Int. J. Heat Fluid Flow
0142-727X,
24
(
4
), pp.
454
462
.
10.
Bons
,
J. P.
, 2002, “
St and Cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
632
644
.
11.
Schlichting
,
H.
, 1936, “
Experimental Investigation of the Problem of Surface Roughness
,” National Advisory Committee on Aeronautics, Paper No. NACA TM-832.
12.
Finson
,
M. L.
, 1982, “
A Model for Rough Wall Turbulent Heating and Skin Friction
,” AIAA Paper No. 82-0199.
13.
Adams
,
J. C.
, and
Hodge
,
B. K.
, 1977, “
The Calculation of Compressible Transitional Turbulent and Relaminarizational Boundary Layers over Smooth and Rough Surfaces Using an Extended Mixing-Length Hypothesis
,” AIAA Paper No. 77-682.
14.
Lin
,
T. C.
, and
Bywater
,
R. J.
, 1980, “
The Evaluation of Selected Turbulence Models for High-Speed Rough-Wall Boundary Layer Calculations
,” AIAA Paper No. 80-0132.
15.
Taylor
,
R. P.
, 1983, “
A Discrete Element Prediction Approach for Turbulent Flow Over Rough Surfaces
,” Ph.D. thesis, Department of Mechanical and Nuclear Engineering, Mississippi State University, MS.
16.
Bons
,
J. P.
,
McClain
,
S. T.
,
Wang
,
Z. J.
,
Chi
,
X.
, and
Shih
,
T. I.
, 2008, “
A Comparison of Approximate vs. Exact Geometrical Representations of Roughness for CFD Calculations of Cf and St
,”
ASME J. Turbomach.
0889-504X,
130
(
2
), p.
021024
.
17.
McClain
,
S. T.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
, 2004, “
Predicting Skin Friction and Heat Transfer for Turbulent Flow Over Real Gas-Turbine Surface Roughness Using the Discrete-Element Method
,”
ASME J. Turbomach.
0889-504X,
126
(
2
), pp.
259
267
.
18.
McClain
,
S. T.
,
Collins
,
S. P.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
, 2006, “
The Importance of the Mean Elevation in Predicting Skin Friction for Flow Over Closely Packed Surface Roughness
,”
ASME J. Fluids Eng.
0098-2202,
128
(
3
), pp.
579
586
.
19.
Taylor
,
R. P.
, and
Hodge
,
B. K.
, 1993, “
A Validated Procedure for the Prediction of Fully-Developed Nusselt Numbers and Friction Factors in Pipes With 3-Dimensional Roughness
,”
J. Enhanced Heat Transfer
1065-5131,
1
(
1
), pp.
23
35
.
20.
Hosni
,
M. H.
,
Coleman
,
H. W.
, and
Taylor
,
R. P.
, 1989, “
Measurement and Calculation of Surface Roughness Effects on Turbulent Flow and Heat Transfer
,” Mechanical and Nuclear Engineering, Mississippi State University, Report No. TFD-89-1.
21.
Bons
,
J. P.
, and
McClain
,
S. T.
, 2004, “
The Effect of Real Turbine Roughness With Pressure Gradient on Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
126
(
3
), pp.
385
394
.
22.
Stripf
,
M.
,
Schulz
,
A.
and
Bauer
,
H. -J.
, 2006, “
Modeling of Rough Wall Boundary Layer Transition and Heat Transfer on Turbine Airfoils
,” ASME Paper No. GT2006-90316.
23.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H. -J.
, and
Wittig
,
S.
, 2008, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer—Part I: Model Formulations
,” ASME Paper No. GT2008-50494.
24.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H. -J.
, and
Wittig
,
S.
, 2008, “
Extended Models for Transitional Rough Wall Boundary Layers with Heat Transfer—Part II: Model Validation and Benchmarking
,” ASME Paper No. GT2008-50495.
25.
Bhatt
,
C. P.
, and
McClain
,
S. T.
, 2007, "
Assessment of Uncertainty in Equivalent Sand-Grain Roughness Methods
," ASME Paper No. IMECE2007-42105.
26.
Sigal
,
A.
, and
Danberg
,
J. E.
, 1990, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
28
(
3
), pp.
554
556
.
27.
Tolpadi
,
A. K.
, and
Crawford
,
M. E.
, 1998, “
Predictions of the Effect of Roughness on Heat Transfer From Turbine Airfoils
,” ASME Paper No. 98-GT-087.
28.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat-Transfer Measurements in Short-Duration Hypersonic Facilities
,” Advisory Group for Aerospace Research and Development (165). NATO.
29.
Gatlin
,
B.
, and
B. K.
Hodge
, 1990, “
An Instructional Computer Program for Computing the Steady, Compressible Turbulent Flow of an Arbitrary Fluid Near a Smooth Wall
,” Department of Mechanical Engineering, Mississippi State University, Second printing.
30.
McClain
,
S. T.
, 2002, “
A Discrete Element Model for Turbulent Flow Over Randomly Rough Surfaces
,” Ph.D. thesis, Department of Mechanical Engineering, Mississippi State University, MS.
31.
McClain
,
S. T.
, and
Brown
,
J. M.
, 2009, “
Reduced Rough-Surface Parameterization for Use With the Discrete-Element Model
,”
ASME J. Turbomach.
0889-504X,
131
(
2
), p.
021020
.
You do not currently have access to this content.