Nonaxisymmetric endwall profiling is a promising method to reduce secondary losses in axial turbines. However, in high-pressure turbines, a small amount of air is ejected at the hub rim seal to prevent the ingestion of hot gases into the cavity between the stator and the rotor disk. This rim seal purge flow has a strong influence on the development of the hub secondary flow structures. This paper presents time-resolved experimental and computational data for a one-and-1/2-stage high work axial turbine, showing the influence of purge flow on the performance of two different nonaxisymmetric endwalls and the axisymmetric baseline case. The experimental total-to-total efficiency assessment reveals that the nonaxisymmetric endwalls lose some of their benefit relative to the baseline case when purge is increased. The first endwall design loses 50% of the efficiency improvement seen with low suction, while the second endwall design exhibits a 34% deterioration. The time-resolved computations show that the rotor dominates the static pressure field at the rim seal exit when purge flow is present. Therefore, the purge flow establishes itself as jets emerging at the blade suction side corner. The jet strength is modulated by the first vane pressure field. The jets introduce circumferential vorticity as they enter the annulus. As the injected fluid is turned around the rotor leading edge, a streamwise vortex component is created. The dominating leakage vortex has the same sense of rotation as the rotor hub passage vortex. The first endwall design causes the strongest circumferential variation in the rim seal exit static pressure field. Therefore, the jets are stronger with this geometry and introduce more vorticity than the other two cases. As a consequence the experimental data at the rotor exit shows the greatest unsteadiness within the rotor hub passage with the first endwall design.

1.
Rose
,
M. G.
, 1994, “
Non-Axisymetric Endwall Profiling in the HP NGVs of an Axial Flow Gas Turbine
,” ASME Paper No. 94-GT-249.
2.
Hartland
,
J. C.
,
Gregory-Smith
,
D. G.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
, 2000, “
Non-Axisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
286
293
.
3.
Ingram
,
G. L.
,
Gregory-Smith
,
D. G.
,
Rose
,
M. G.
,
Harvey
,
N. W.
, and
Brennan
,
G.
, 2002, “
The Effect of End-Wall Profiling on Secondary Flow and Loss Development in a Turbine Cascade
,” ASME Paper No. GT-2002-30339.
4.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
, 2001, “
500 HP Turbine Using Non-Axisymetric End Walls: Part I: Turbine Design
,” ASME Paper No. 2001-GT-0444.
5.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
, 2001, “
500 HP Turbine Using Non-Axisymetric End Walls: Part II: Experimental Validation
,” ASME Paper No. 2001-GT-0505.
6.
Duden
,
A.
,
Raab
,
I.
, and
Fottner
,
L.
, 1998, “
Controlling the Secondary Flow in a Turbine Cascade by 3D
,” ASME Paper No. 98-GT-072.
7.
Eymann
,
S.
,
Foerster
,
W.
,
Beversdorf
,
M.
,
Reinmoeller
,
U.
,
Niehuis
,
R.
, and
Gier
,
J.
, 2002, “
3D Flow Characteristics in a Multistage LP Turbine by Means of Endwall Contouring and Airfoil Design Modification: Part I: Design and Experimental Investigation
,” ASME Paper No. GT-2002-30352.
8.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
, 2007, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,” ASME Paper No. GT2007-27579.
9.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schuepbach
,
P.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, 2008, “
Improving Efficiency of a High-Work Turbine Using Non-Axisymmetric Endwalls. Part I: Endwall Design and Performance
,” ASME Paper No. GT2008-50469.
10.
Schuepbach
,
P.
,
Rose
,
M. G.
,
Abhari
,
R. S.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
, 2008, “
Improving Efficiency of a High-Work Turbine Using Non-Axisymmetric Endwalls. Part II: Time-Resolved Flow Physics
,” ASME Paper No. GT2008-50470.
11.
Milli
,
A.
, and
Shahpar
,
S.
, 2008, “
Full-Parametric Design System to Improve the Stage Efficiency of a High-Fidelity HP Turbine Configuration
,” ASME Paper No. GT2008-51348.
12.
Kobayashi
,
N.
,
Matsumato
,
M.
, and
Shizuy
,
M.
, 1984, “
An Experimental Investigation of a Gas-Turbine Disk Cooling System
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
(
1
), pp.
136
141
.
13.
Chew
,
J. W.
,
Dadkhah
,
S.
, and
Turner
,
A. B.
, 1992, “
Rim Sealing of Rotor-Stator Wheelspaces in the Absence of External Flow
,”
ASME J. Turbomach.
0889-504X,
114
(
2
), pp.
433
438
.
14.
Dadkhah
,
S.
,
Turner
,
A. B.
, and
Chew
,
J. W.
, 1992, “
Performance of Radial Clearance Rim Seals in Upstream and Downstream Rotor-Stator Wheelspaces
,”
ASME J. Turbomach.
0889-504X,
114
(
2
), pp.
439
445
.
15.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
, 2001, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part I—Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
687
696
.
16.
McLean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
, 2001, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part II—Aerodynamic Measurements in the Rotational Frame’
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
697
703
.
17.
Ong
,
J. H. P.
,
Miller
,
R. J.
, and
Uchida
,
S.
, 2006, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,” ASME Paper No. GT2006-91060.
18.
Paniagua
,
G.
,
Denos
,
R.
, and
Almeida
,
S.
, 2004, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
0889-504X,
126
(
4
), pp.
578
586
.
19.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
, 2006, “
The Effect of Stator-Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,” ASME Paper No. GT-2006-90838.
20.
Marini
,
R.
, and
Girgis
,
S.
, 2007, “
The Effect of Blade Leading Edge Platform Shape on Upstream Disk Cavity to Mainstream Flow Interaction of a High-Pressure Turbine Stage
,” ASME Paper No. GT2007-27429.
21.
Schuepbach
,
P.
,
Rose
,
M. G.
,
Abhari
,
R. S.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
, 2008, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,” ASME Paper No. GT2008-50471.
22.
Germain
,
T.
,
Nagel
,
M.
, and
Baier
,
R. -D.
, 2007. “
Visualisation and Quantification of Secondary Flows: Application to Turbine Bladings With 3D-Endwalls
,”
Proceedings of the ISAIF
, Lyon.
23.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
, 1980, “
Natural Transition of Boundary Layers—The Effect of Turbulence, Pressure Gradient and Flow History
,”
J. Mech. Eng. Sci.
0022-2542,
22
(
5
), pp.
213
228
.
24.
Behr
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2007, “
Unsteady Flow Physics and Performance of a One-and-1/2-Stage Unshrouded High Work Turbine
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
348
359
.
25.
Kupferschmied
,
P.
,
Kopperl
,
O.
,
Gizzi
,
W. P.
, and
Gyarmathy
,
G.
, 2000, “
Time Resolved Flow Measurements With Fast Aerodynamic Probes in Turbomachinery
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
1036
1054
.
26.
Pfau
,
A.
,
Schlienger
,
J.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2003, “
3-Dimensional Flow Measurement Using a Miniature Virtual 4 Sensor Fast Response Aerodynamic Probe (FRAP)
,” ASME Paper No. GT2003-38128.
27.
ISO
, 1995,
Guide to the Expression of Uncertainty in Measurement (GUM)
,
International Organization for Standardization
,
Geneva, Switzerland
.
28.
Dubief
,
Y.
, and
Delcayre
,
F.
, 2000, “
On Coherent-Vortex Identification in Turbulence
,”
J. Turbul.
1468-5248,
1
, pp.
N11
.
You do not currently have access to this content.