This study is to examine experimentally the effects of pin inclination and pin height-to-diameter ratio on the heat/mass transfer characteristics in a pin-fin channel with and without rotation. The test model consists of staggered pin-fin arrays with an interpin spacing of 2.5 times of the pin-diameter (S/D=2.5) in both longitudinal and transverse directions. Detailed local heat/mass transfer coefficients on the two principal surfaces of rotating channel are measured using the naphthalene sublimation technique. The inclined angles (θ) studied are 60 deg and 90 deg. The pin height-to-diameter ratio (Hp/Dp) ranges from 2 to 4. The Reynolds number is fixed at 7.0×103 with two rotation numbers (0.0 and 0.2). The measured data show that the overall array heat/mass transfer decreases with the angle of inclination relative to the vertical orientation. The overall array averaged as well as the row-resolved heat/mass transfer increases with an increase in Hp/Dp. Rotation generally results in higher heat/mass transfer than the corresponding stationary case. The nonuniformity or redistribution of heat/mass transfer induced by the Coriolis force generally perceived in a ribbed or smooth channel is less evident in a pin-fin channel.

1.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
, 2001,
Gas Turbine Theory
,
Prentice-Hall
,
Harlow
.
2.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor and Francis
,
New York
.
3.
VanFossen
,
G. J.
, 1982, “
Heat–Transfer Coefficients for Staggered Arrays of Short Pin Fins
,”
ASME J. Eng. Power
0022-0825,
104
, pp.
268
274
.
4.
Brigham
,
B. A.
, and
VanFossen
,
G. J.
, 1984, “
Length to Diameter Ratios and Row Number Effects in Short Pin Fin Heat Transfer
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
241
245
.
5.
Sparrow
,
E. M.
,
Stahl
,
T. J.
, and
Traub
,
P.
, 1984, “
Heat Transfer Adjacent to the Attached End of a Cylinder in Crossflow
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
233
242
.
6.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Broson
,
J. P.
, 1982, “
Developing Heat Transfer in Rectangular Ducts With Staggered Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
700
706
.
7.
Armstrong
,
J.
, and
Winstanley
,
D.
, 1988, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
94
103
.
8.
Goldstein
,
R. J.
,
Jabbari
,
M. Y.
, and
Chen
,
S. B.
, 1994, “
Convective Mass Transfer and Pressure Loss Characteristics of Staggered Short Pin-Fin Arrays
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
149
160
.
9.
Chyu
,
M. K.
, 1990, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin Endwall Fillet
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
926
932
.
10.
Chyu
,
M. K.
,
Oluyede
,
E. O.
, and
Moon
,
H. K.
, 2007, “
Heat Transfer on Convective Surfaces With Pin-Fins Mounted in Inclined Angles
,” ASME Paper No. 2007-GT-28138.
11.
Choi
,
I. K.
,
Kim
,
T.
,
Song
,
S. J.
, and
Lu
,
T. J.
, 2007, “
Endwall Heat Transfer and Fluid Flow Around an Inclined Short Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
919
930
.
12.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
, 1991, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
42
51
.
13.
Kim
,
K. M.
,
Park
,
S. H.
,
Jeon
,
Y. H.
,
Lee
,
D. H.
, and
Cho
,
H. H.
, 2008, “
Heat/Mass Transfer Characteristics in Angled Ribbed Channels With Various Bleed Ratios and Rotation Numbers
,”
ASME J. Turbomach.
0889-504X,
130
, p.
031021
.
14.
Lesley
,
M. W.
,
Lee
,
E.
, and
Han
,
J. C.
, 2003, “
Effect of Rotation on Heat Transfer in Narrow Rectangular Cooling Channels With Pin-Fins
,” ASME Paper No. 2003-GT-38340.
15.
Su
,
G.
,
Chen
,
H. C.
, and
Han
,
J. C.
, 2007, “
Computation of Flow and Heat Transfer in Rotating Rectangular Channels With Pin-Fins by Reynolds Stress Turbulence Model
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
685
696
.
16.
Chang
,
S. W.
,
Yang
,
T. L.
,
Liou
,
T. M.
, and
Hong
,
G. F.
, 2008, “
Heat Transfer in Radially Rotating Pin-Fin Channel at High Rotation Numbers
,” ASME Paper No. 2008-GT-50514.
17.
Park
,
J. S.
,
Kim
,
K. M.
,
Lee
,
D. H.
,
Cho
,
H. H.
, and
Chyu
,
M. K.
, 2008, “
Heat Transfer Coefficient on Rotating Channel With Various Heights of Pin-Fin
,” ASME Paper No. GT 2008-50783.
18.
Jeon
,
Y. H.
,
Park
,
S. H.
,
Kim
,
K. M.
,
Lee
,
D. H.
, and
Cho
,
H. H.
, 2007, “
Effects of Bleed Flow on Heat/Mass Transfer in a Rotating Rib-Roughened Channel
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
636
642
.
19.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I. P.
, and
Natarajan
,
V.
, 1999, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
257
263
.
20.
Ambrose
,
D.
,
Lawrenson
,
I. J.
, and
Sparke
,
C. H. S.
, 1975, “
The Vapor Pressure of Naphthalene
,”
J. Chem. Thermodyn.
0021-9614,
7
, pp.
1173
1176
.
21.
Goldstein
,
R. J.
, and
Cho
,
H. H.
, 1995, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
416
434
.
22.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
23.
McAdams
,
W. H.
, 1942,
Heat Transmission
,
2nd ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.