Complex vortical secondary flows that are present near the endwall of an axial gas turbine blade are responsible for high heat transfer rates and high aerodynamic losses. The application of nonaxisymmetric, three-dimensional contouring to the endwall surface has been shown to reduce the strength of the vortical flows and decrease total pressure losses when compared with a flat endwall. The reduction in secondary flow strength with nonaxisymmetric contouring might also be expected to reduce endwall heat transfer. In this study, measurements of endwall heat transfer were taken for a low-pressure turbine blade geometry with both flat and three-dimensional contoured endwalls. Endwall oil flow visualization indicated a reduction in the passage vortex strength for the contoured endwall geometry. Heat transfer levels were reduced by 20% in regions of high heat transfer with the contoured endwall, as compared with the flat endwall. The heat transfer benefit of the endwall contour was not affected by changes in the cascade Reynolds number.

1.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Passage
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
866
874
.
2.
Sharma
,
O. P.
, and
Butler
,
T. L.
, 1987, “
Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
229
236
.
3.
Goldstein
,
R. J.
, and
Spores
,
R. A.
, 1988, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
862
869
.
4.
Boletis
,
E.
, 1985, “
Effects of Tip Endwall Contouring on the Three-Dimensional Flow Field in an Annular Turbine Nozzle Guide Vane: Part 1—Experimental Investigation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
983
990
.
5.
Morris
,
A. W. H.
, and
Hoare
,
R. G.
, 1975, “
Secondary Loss Measurements in a Cascade of Turbine Blades With Meridional Wall Profiling
,”
ASME
Paper No. 75-WA/GT-13.
6.
Lin
,
Y. -L.
, and
Shih
,
T. I-P.
, 2000, “
Flow and Heat Transfer in a Turbine Nozzle Guide Vane With Endwall Contouring
,” AIAA Paper No. AIAA-2000-3002.
7.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Taylor
,
M. D.
,
Shahpar
,
S.
,
Hartland
,
J.
, and
Gregory-Smith
,
D.
, 2000, “
Non-Axisymmetric Turbine End Wall Design: Part I—Three-Dimensional Linear Design System
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
278
285
.
8.
Hartland
,
J.
,
Gregory-Smith
,
D.
,
Harvey
,
N. W.
, and
Rose
,
M. G.
, 2000, “
Non-Axisymmetric Turbine End Wall Design: Part II—Experimental Validation
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
286
293
.
9.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
, 2003, “
Improving the Efficiency of the Trent 500-HP Turbine Using Non-Axisymmetric End Walls: Part I—Turbine Design
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
497
504
.
10.
Rose
,
M. G.
,
Harvey
,
N. W.
,
Seaman
,
P.
,
Newman
,
D. A.
, and
McManus
,
D.
, 2001, “
Improving the Efficiency of the Trent 500-HP Turbine Using Non-Axisymmetric End Walls. Part II: Experimental Validation
,”
ASME
Paper No. 2001-GT-0505.
11.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Scheupbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M.
, 2008, “
Improving Efficiency of a High-Work Turbine Using Non-Axisymmetric Endwalls Part I: Endwall Design and Performance
,”
ASME
Paper No. GT2008-50469.
12.
Scheupbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
, 2008, “
Improving Efficiency of a High-Work Turbine Using Non-Axisymmetric Endwalls Part II: Time-Resolved Flow Physics
,”
ASME
Paper No. GT2008-50470.
13.
Saha
,
A. K.
, and
Acharya
,
S.
, 2008, “
Computations of Turbulent Flow and Heat Transfer Through a Three-Dimensional Nonaxisymmetric Blade Passage
,”
ASME J. Turbomach.
0889-504X,
130
, p.
031008
.
14.
Gustafson
,
R.
,
Mahmood
,
G.
, and
Acharya
,
S.
, 2007, “
Aerodynamic Measurements in a Linear Turbine Blade Passage With Three-Dimensional Endwall Contouring
,”
ASME
Paper No. GT2007-28073.
15.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. Z.
, and
Sjolander
,
S. A.
, 2007, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Airfoils
,”
ASME
Paper No. GT2007-27579.
16.
Knezevici
,
D. Z.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
, 2008, “
Measurements of Secondary Losses in a Turbine Cascade With the Implementation of Non-Axisymmetric Endwall Contouring
,”
ASME
Paper No. GT2008-51311.
17.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
, 2008, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME
Paper No. GT2008-50898.
18.
Baines
,
W. D.
, and
Peterson
,
E. G.
, 1951, “
An Investigation of Flow Through Screens
,”
Trans. ASME
0097-6822,
73
, pp.
467
480
.
19.
Lake
,
J. P.
,
King
,
P. I.
, and
Rivir
,
R. B.
, 1999, “
Reduction of Separation Losses on a Turbine Blade With Low Reynolds Numbers
,” AIAA Paper No. 99-0242.
20.
Murawski
,
C. G.
, and
Vafai
,
K.
, 2000, “
An Experimental Investigation of the Effect of Freestream Turbulence on the Wake of a Separated Low Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
0098-2202,
122
, pp.
431
433
.
21.
Mahallati
,
A.
,
McAuliffe
,
B. R.
,
Sjolander
,
S. A.
, and
Praisner
,
T.
, 2007, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low Reynolds Numbers Part I: Steady Flow Measurements
,”
ASME
Paper No. GT2007-27347.
22.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
, 2007, “
Comparative Investigation of Three Highly-Loaded LP Turbine Airfoils: Part I—Measured Profile and Secondary Losses at Design Incidence
,”
ASME
Paper No. GT2007-27537.
23.
Popovic
,
I.
,
Zhu
,
J.
,
Dai
,
W.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
and
Grover
,
E. A.
, 2006, “
Aerodynamics of a Family of Three Highly Loaded Low-Pressure Turbine Airfoils: Measured Effects of Reynolds Number and Turbulence Intensity in Steady Flow
,”
ASME
Paper No. GT2006-91271.
24.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
558
568
.
25.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
26.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1980,
Convective Heat and Mass Transfer
,
2nd ed.
,
McGraw-Hill
,
New York
, pp.
216
217
.
27.
Thole
,
K. A.
, and
Bogard
,
D. G.
, 1995, “
Enhanced Heat Transfer and Shear Stress Due to High Freestream Turbulence
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
418
424
.
28.
Fluent Inc.
, FLUENT (version 6.3.26), Lebanon, NH.
29.
Sieverding
,
C. H.
, 1985, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
248
257
.
You do not currently have access to this content.