This paper presents the effects of major geometrical modifications to the interior of a convection cooled gas turbine rotor blade. The analysis of the flow is performed experimentally with flow visualization via paint injection into water, whereas the flow and the heat transfer are investigated numerically with ANSYS CFX, utilizing the SST turbulence model. Two sets of calculations are carried out: one under the same conditions as the experiments and another according to realistic hot gas conditions with conjugate heat transfer. The aim is to identify flow phenomena altering the heat transfer in the blade and to manipulate them in order to reduce the thermal load of the material. The operating point of the geometric base configuration is set to Re=50,000 at the inlet while for the modified geometries, the pressure ratio is held constant compared with the base. Flow structures and heat transfer conditions are evaluated and are linked to specific geometric features. Among several investigated configurations one could be identified that leads to a cooling effectiveness 15% larger compared with the base.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Lechner
,
C.
, and
Seume
,
J.
, 2003,
Stationäre Gasturbinen
,
Springer-Verlag
,
Berlin
.
3.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
, 1985, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Int. Commun. Heat Mass Transfer
0735-1933,
12
(
1
), pp.
3
22
.
4.
Gee
,
D. L.
, and
Webb
,
R. L.
, 1980, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
23
, pp.
1127
1136
.
5.
Webb
,
R. L.
, 1981, “
Performance Evaluation Criteria for Use of Enhanced Heat Transfer Surfaces in Heat Exchanger Design
,”
Int. J. Heat Mass Transfer
0017-9310,
24
(
4
), pp.
715
726
.
6.
Casarsa
,
L.
,
Çakan
,
M.
, and
Arts
,
T.
, 2002, “
Characterization of the Velocity and Heat Transfer Fields in an Internal Cooling Channel With High Blockage Ratio
,”
ASME
Paper No. GT-2002-30207.
7.
Diette
,
C.
,
Arts
,
T.
,
Sgarzi
,
O.
, and
Laroche
,
E.
, 2004, “
Investigation of a High Aspect Ratio Rectangular Channel With High Blockage Ratio Round-Corner Ribs
,”
ASME
Paper No. GT2004-53163.
8.
Han
,
J. C.
, and
Park
,
J. S.
, 1988, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
1
), pp.
183
195
.
9.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
, 1989, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
9
), pp.
1619
1630
.
10.
Han
,
J. C.
, and
Zhang
,
Y. M.
, 1992, “
High Performance Heat Transfer Ducts With Parallel Broken and V-Shaped Broken Ribs
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
2
), pp.
513
523
.
11.
Park
,
J. S.
,
Han
,
J. C.
,
Huang
,
Y.
, and
Ou
,
S.
, 1992, “
Heat Transfer Performance Comparisons of Five Different Rectangular Channels With Parallel Angled Ribs
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
11
), pp.
2891
2903
.
12.
Bailey
,
J. C.
, and
Bunker
,
R. S.
, 2003, “
Heat Transfer and Friction in Channels With Very High Blockage 45° Staggered Turbulators
,”
ASME
Paper No. GT2003-38611.
13.
Bunker
,
R. S.
, and
Osgood
,
S. J.
, 2003, “
The Effect of Turbulator Lean on Heat Transfer and Friction in a Square Channel
,”
ASME
Paper No. GT2003-8137.
14.
Burgess
,
N. K.
,
Oliveira
,
M. M.
, and
Ligrani
,
P. M.
, 2003, “
Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
11
18
.
15.
Griffith
,
T. S.
,
Al-Hdhrami
,
L.
, and
Han
,
J. C.
, 2003, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) With Dimples
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
555
564
.
16.
Metzger
,
D. E.
,
Berry
,
R. A.
, and
Bronson
,
J. P.
, 1982, “
Developing Heat Transfer in Rectangular Ducts With Arrays of Short Pin Fins
,”
ASME J. Heat Transfer
0022-1481,
104
, pp.
700
706
.
17.
Perelman
,
T. L.
, 1961, “
On Conjugated Problems of Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
3
, pp.
293
303
.
18.
Bohn
,
D. E.
, and
Tümmers
,
C.
, 2003, “
Numerical 3-D Conjugate Flow and Heat Transfer Investigation of a Transonic Convection-Cooled Thermal Barrier Coated Turbine Guide Vane With Reduced Cooling Fluid Mass Flow
,”
ASME
Paper No. GT2003-38431.
19.
Mahmood
,
G. I.
,
Ligrani
,
P. M.
, and
Chen
,
K.
, 2003, “
Variable Property and Temperature Ratio Effects on Nusselt Numbers in a Rectangular Channel With 45 Deg Angled Rib Turbulators
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
769
778
.
20.
Pamula
,
G.
,
Ekkad
,
S. V.
, and
Acharya
,
S.
, 2001, “
Influence of Crossflow-Induced Swirl and Impingement on Heat Transfer in a Two-Pass Channel Connected by Two Rows of Holes
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
281
287
.
21.
Ansys, Inc.
, 2006, ANSYS CFX 11.0 Manual.
22.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
23.
Ansys, Inc.
, 2006, ANSYS ICEM CFD 11.0.
24.
Grote
,
K. H.
, and
Feldhusen
,
J.
, 2005,
Dubbel—Taschenbuch für den Maschinenbau
, 21st ed.,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.