This study investigates the effect of wakes in the presence of varying levels of background freestream turbulence on the heat (mass) transfer from gas turbine blades. Measurements using the naphthalene sublimation technique provide local values of the mass transfer coefficient on the pressure and suction surfaces of a simulated turbine blade in a linear cascade. Experimental parameters studied include the pitch of the wake-generating blades (vanes), blade-row separation, Reynolds number, and the freestream turbulence level. The disturbed flow strongly affects the mass transfer Stanton number on both sides of the blade, particularly along the suction surface. An earlier transition to a turbulent boundary layer occurs with increased background turbulence, higher Reynolds number, and from wakes shed from vanes placed upstream of the linear cascade. Note that once the effects on mass transfer are known, similar variation on heat transfer can be inferred from the heat/mass transfer analogy.

1.
Doorly
,
D.
, and
Oldfield
,
M.
, 1985, “
Simulation of Wake Passing in a Stationary Turbine Rotor Cascade
,”
J. Propul. Power
0748-4658,
1
, pp.
316
318
.
2.
Wittig
,
S.
,
Dullenkopf
,
K.
,
Schulz
,
A.
, and
Hestermann
,
R.
, 1987, “
Laser-Doppler Studies of the Wake Effected Flow Field in a Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
109
(
2
), pp.
170
176
.
3.
Dresar
,
N. V.
, and
Mayle
,
R.
, 1989, “
A Quasi-Steady Approach of Wake Effects on Leading Edge Transfer Rates
,”
ASME J. Turbomach.
0889-504X,
111
(
4
), pp.
483
490
.
4.
Dunn
,
M.
,
Seymour
,
P.
,
Woodward
,
S.
,
George
,
W.
, and
Chupp
,
R.
, 1989, “
Phase Resolved Heat Flux Measurements on the Blade of a Full-Scale Rotating Turbine
,”
ASME J. Turbomach.
0889-504X,
111
(
1
), pp.
8
19
.
5.
O’Brien
,
J.
, 1990, “
Effects of Wake Passing on Stagnation Region Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
522
530
.
6.
Dullenkopf
,
K.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1990, “
The Effect of Incident Wake Conditions on the Mean Heat Transfer of an Airfoil
,”
ASME
Paper No. 90-GT-121.
7.
Dullenkopf
,
K.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1991, “
The Effect of Incident Wake Conditions on the Mean Heat Transfer of an Airfoil
,”
ASME J. Turbomach.
0889-504X,
113
(
3
), pp.
412
418
.
8.
Zhang
,
L.
, and
Han
,
J.
, 1995, “
Combined Effect of Free-Stream Turbulence and Unsteady Wake on Heat Transfer Coefficients From a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
117
(
2
), pp.
296
301
.
9.
Du
,
H.
,
Ekkad
,
S.
, and
Han
,
J. -C.
, 1997, “
Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Detailed Heat Transfer Coefficient Distributions for a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
119
(
2
), pp.
242
248
.
10.
Du
,
H.
,
Han
,
J.
, and
Ekkad
,
S.
, 1998, “
Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
808
817
.
11.
Mhetras
,
S.
, and
Han
,
J. -C.
, 2006, “
Effect of Unsteady Wake on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade
,”
Collection of Technical Papers—Ninth AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings
, Vol.
2
, p.
1382
.
12.
Dunn
,
M.
, 2001, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
637
686
.
13.
Stieger
,
R.
, and
Hodson
,
H.
, 2005, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
388
394
.
14.
Wissink
,
J.
, and
Rodi
,
W.
, 2006, “
Direct Numerical Simulation of Flow and Heat Transfer in a Turbine Cascade With Incoming Wakes
,”
J. Fluid Mech.
0022-1120,
569
, pp.
209
247
.
15.
Ameri
,
A.
,
Rigby
,
D.
,
Steinthorsson
,
E.
,
Heidmann
,
J.
, and
Fabian
,
J.
, 2007, “
Unsteady Turbine Blade and Tip Heat Transfer Due to Wake Passing
,”
Proceedings of the ASME Turbo Expo
, Vol.
4
, p.
507
.
16.
Allan
,
W.
,
Ainsworth
,
R.
, and
Thorpe
,
S.
, 2008, “
Unsteady Heat Transfer Measurements From Transonic Turbine Blades at Engine Representative Conditions in a Transient Facility
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
041901
.
17.
Emmons
,
H.
, 1951, “
The Laminar-Turbulent Transition in a Boundary Layer—Part 1
,”
J. Aeronaut. Sci.
0095-9812,
119
, pp.
490
498
.
18.
Addison
,
J.
, and
Hodson
,
H.
, 1991, “
Modeling of Unsteady Transitional Boundary Layers
,”
ASME
Paper No. 91-GT-282, pp.
1
8
.
19.
Mayle
,
R.
, and
Dullenkopf
,
K.
, 1991, “
More on the Turbulent-Strip Theory for Wake Induced Transition
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
428
432
.
20.
Mayle
,
R.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
21.
Wang
,
H.
,
Goldstein
,
R.
, and
Olson
,
S.
, 1999, “
Effect of High Free-Stream Turbulence With Large Length Scale on Blade Heat/Mass Transfer
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
217
224
.
22.
Wang
,
H.
,
Olson
,
S.
,
Goldstein
,
R.
, and
Eckert
,
E.
, 1997, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
1
8
.
23.
Goldstein
,
R.
, and
Cho
,
H.
, 1995, “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
(
4
), pp.
416
434
.
24.
Goldstein
,
R.
,
Wang
,
H.
, and
Jabbari
,
M.
, 1995, “
The Influence of Secondary Flows Near the Endwall and Boundary Layer Disturbance on Convective Transport From a Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
657
665
.
25.
Hain
,
R.
,
Wang
,
H.
,
Chen
,
P.
, and
Goldstein
,
R.
, 1991, “
A Microcomputer-Controlled Data Acquisition System for Naphthalene Sublimation Measurement
,”
11th ABCM Mechanical Engineering Conference
, Sao Paulo, Brazil, Vol.
119
, pp.
1
6
.
26.
Kline
,
S.
, and
McClintock
,
F.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
27.
Olson
,
S.
, 1999, “
Effects of High Turbulence and Wakes on Mass Transfer From Gas Turbine Blades
,” Ph.D. thesis, University of Minnesota, Minneapolis, MN.
28.
Cho
,
K.
, 1989, “
Measurement of the Diffusion Coefficient of Naphthalene Into Air
,” Ph.D. thesis, The State University of New York at Stony Brook, Stony Brook, New York.
29.
Chen
,
P.
, and
Wung
,
P.
, 1990, “
Diffusion Coefficient of Naphthalene in Air
,”
J. Chin. Inst. Chem. Eng.
0368-1653,
21
(
3
), pp.
161
166
.
30.
Wygnanski
,
I.
,
Champagne
,
F.
, and
Marasli
,
B.
, 1986, “
On the Large-Scale Structures in Two-Dimensional, Small-Deficit, Turbulent Wakes
,”
J. Fluid Mech.
0022-1120,
168
, pp.
31
71
.
You do not currently have access to this content.