The midspan section of a low speed subsonic turbine stage that is built and tested at DFVLR, Cologne, is redesigned using a new inverse blade design method, where the blade walls move with a virtual velocity distribution derived from the difference between the current and target pressure distributions on the blade surfaces. This new inverse method is fully consistent with the viscous flow assumption and is implemented into the time-accurate solution of the Reynolds-averaged Navier–Stokes equations. An algebraic Baldwin–Lomax turbulence model is used for turbulence closure. The mixing plane approach is used to couple the stator and rotor regions. The computational fluid dynamics (CFD) analysis formulation is first assessed against the turbine stage experimental data. The inverse formulation that is implemented in the same CFD code is assessed for its robustness and merits. The inverse design method is then used to study the effect of the rotor pressure loading on the blade shape and stage performance. It is also used to simultaneously redesign both stator and rotor blades for improved stage performance. The results show that by carefully tailoring the target pressure loading on both blade rows, improvement can be achieved in the stage performance.

1.
Thompkins
,
W.
, and
Tong
,
S.
, 1982, “
Inverse or Design Calculation for Nonpotential Flows in Turbomachinery Cascades
,”
ASME J. Eng. Power
0022-0825,
104
(
2
), pp.
281
285
.
2.
Zannetti
,
L.
, 1986, “
A Natural Formulation for the Solution of Two-Dimensional or Axisymmetric Inverse Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
22
, pp.
451
463
.
3.
Giles
,
M.
, and
Drela
,
M.
, 1987, “
Two Dimensional Transonic Aerodynamic Design Method
,”
AIAA J.
0001-1452,
25
(
9
), pp.
1199
1205
.
4.
Demeulenaere
,
A.
,
Leonard
,
O.
, and
van den Braembussche
,
R.
, 1997, “
A Two Dimensional Navier–Stokes Inverse Solver for Compressor and Turbine Blade Design
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
211
, pp.
299
307
.
5.
de Vito
,
L.
,
Van den Braembussche
,
R. A.
, and
Deconinck
,
H.
, 2003, “
A Novel Two Dimensional Viscous Inverse Design Method for Turbomachinery Blading
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
310
316
.
6.
Léonard
,
O.
, and
Van den Braembussche
,
R.
, 1992, “
Design Method for Subsonic and Transonic Cascades With the Prescribed Mach Number Distribution
,”
ASME J. Turbomach.
0889-504X,
114
(
3
), pp.
553
560
.
7.
Zannetti
,
L.
, and
Pandolfi
,
M.
, 1984, “
Inverse Design Techniques for Cascades
,”
NASA
Report No. CR-3836.
8.
Dang
,
T.
, 1995, “
Inverse Method for Turbomachinery Blade Using Shock-Capturing Techniques
,” AIAA Paper No. 95-2465.
9.
Damle
,
S.
,
Dang
,
T.
,
Stringham
,
J.
, and
Razinsky
,
E.
, 1999, “
Practical Use of a 3D Viscous Inverse Method for the Design of Compressor Blade
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
321
325
.
10.
Ahmadi
,
M.
, and
Ghaly
,
W.
, 1998, “
Aerodynamic Design of Turbomachinery Cascades Using a Finite Volume Method on Unstructured Meshes
,”
Inverse Probl. Eng.
1068-2767,
6
, pp.
281
298
.
11.
Choo
,
B.
, and
Zangeneh
,
M.
, 2002, “
Development of an (Adaptive) Unstructured 2-D Inverse Design Method for Turbomachinery Blades
,” ASME Paper No. GT2002-30620.
12.
Daneshkhah
,
K.
, and
Ghaly
,
W.
, 2007, “
Aerodynamic Inverse Design for Viscous Flow in Turbomachinery Blading
,”
J. Propul. Power
0748-4658,
23
(
4
), pp.
814
820
.
13.
van Rooij
,
M. P. C.
,
Dang
,
T. Q.
, and
Larosiliere
,
L. M.
, 2007, “
Improving Aerodynamic Matching of Axial Compressor Blading Using a Three-Dimensional Multistage Inverse Design Method
,”
ASME J. Turbomach.
0889-504X,
129
(
1
), pp.
108
118
.
14.
Yang
,
T.
, and
Ntone
,
F.
, 1986, “
Viscous Compressible Flow Direct and Inverse Computation With Illustration
,”
NASA
Report No. CR-175037.
15.
Tong
,
S.
, and
Thompkins
,
W.
, 1982, “
A Design Calculation Procedure for Shock-Free or Strong Passage Shock Turbomachinery Cascades
,” ASME Paper No. 82-GT-220.
16.
Daneshkhah
,
K.
, and
Ghaly
,
W.
, 2006, “
An Inverse Blade Design Method for Subsonic and Transonic Viscous Flow in Compressors and Turbines
,”
Inverse Probl. Sci. Eng.
1741-5977,
14
(
3
), pp.
211
231
.
17.
Mileshin
,
V.
,
Orekhov
,
I.
,
Shchipin
,
S.
, and
Startsev
,
A.
, 2007, “
3D Inverse Design of Transonic Fan Rotors Efficient for a Wide Range of RPM
,” ASME Paper No. GT2007-27817.
18.
Daneshkhah
,
K.
, and
Ghaly
,
W.
, 2007, “
Redesign of a Highly Loaded Transonic Turbine Nozzle Blade Using a New Viscous Inverse Design Method
,” ASME Paper No. GT2007-27430.
19.
Giles
,
M.
, 1991, “
UNSFLO: A Numerical Method for the Calculation of Unsteady Flow in Turbomachinery
,”
MIT
Report No. 205.
20.
Giles
,
M.
, 1990, “
Nonreflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
0001-1452,
28
(
12
), pp.
2050
2058
.
21.
Fottner
,
L.
, 1990, “
Test Cases for Computation of Internal Flows in Aero Engine Components
,”
AGARD Propulsion and Energetics Panel
Report No. AGARD-AR-275,
22.
Mavriplis
,
D.
,
Jameson
,
A.
, and
Martinelli
,
L.
, 1989, “
Multigrid Solution of the Navier Stokes Equations on Triangular Meshes
,” AIAA Paper No. 89-0120.
23.
Jameson
,
A.
, 1991, “
Time Dependent Calculations Using Multigrid, With Application to Unsteady Flow Past Airfoils and Wings
,” AIAA Paper No. 91-1596.
24.
Demirdzic
,
I.
, and
Peric
,
M.
, 1988, “
Space Conservation Law in Finite Volume Calculations of Fluid Flow
,”
Int. J. Numer. Methods Fluids
0271-2091,
8
, pp.
1037
1050
.
25.
Baldwin
,
B.
, and
Lomax
,
H.
, 1978, “
Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows
,” AIAA Paper No. 78-257.
26.
Mavriplis
,
D.
, 1991, “
Turbulent Flow Calculations Using Unstructured and Adaptive Meshes
,”
Int. J. Numer. Methods Fluids
0271-2091,
13
(
9
), pp.
1131
1152
.
27.
Chima
,
R.
, 1987, “
Explicit Multigrid Algorithm for Quasi-Three-Dimensional Viscous Flows in Turbomachinery
,”
J. Propul. Power
0748-4658,
3
(
5
), pp.
397
405
.
You do not currently have access to this content.