In this paper, a new multiploid genetic optimization method handling surrogate models of the CFD solutions is presented and applied for a multi-objective turbine blade aerodynamic optimization problem. A fast, efficient, robust, and automated design method is developed to aerodynamically optimize 3D gas turbine blades. The design objectives are selected as maximizing the adiabatic efficiency and torque so as to reduce the weight, size, and cost of the gas turbine engine. A 3D steady Reynolds averaged Navier–Stokes solver is coupled with an automated unstructured grid generation tool. The solver is verified using two well-known test cases. The blade geometry is modeled by 36 design variables plus the number of blade variables in a row. Fine and coarse grid solutions are respected as high- and low-fidelity models, respectively. One of the test cases is selected as the baseline and is modified by the design process. It was found that the multiploid multi-objective genetic algorithm successfully accelerates the optimization and prevents the convergence with local optimums.

1.
Poloni
,
C.
, 1995, “
Hybrid GA for Multi-Objective Aerodynamic Shape Optimization
,”
Genetic Algorithms in Engineering and Computational Science
,
Wiley
,
New York
, pp.
397
415
.
2.
Nemec
,
M.
,
Zingg
,
D. W.
, and
Pulliam
,
T. H.
, 2002, “
Multi-Point and Multi-Objective Aerodynamic Shape Optimization
,” Paper No. AIAA 2002-5548.
3.
Chiba
,
K.
,
Obayashi
,
S.
, and
Nakahashi
,
K.
, 2006, “
Design Exploration of Aerodynamic Wing Shape for Reusable Launch Vehicle Flyback Booster
,”
J. Aircr.
0021-8669,
43
(
3
), pp.
832
836
.
4.
Obayashi
,
S.
, and
Sasaki
,
D.
, 2004, “
Multiobjective Aerodynamic Design and Visualization of Supersonic Wings by Using Adaptive Range Multiobjective Genetic Algorithms
,”
Applications of Multi-Objective Evolutionary Algorithms
,
World Scientific
,
Singapore
, pp.
295
315
.
5.
Lee
,
J.
, and
Hajela
,
P.
, 1996, “
Parallel Genetic Algorithm Implementation in Multidisciplinary Rotor Blade Design
,”
J. Aircr.
0021-8669,
33
(
5
), pp.
962
969
.
6.
Ghisu
,
T.
,
Parks
,
G. T.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
, 2006, “
Multi-Objective Optimisation of Aero-Engine Compressors
,”
Proceedings of the Third International Conference on the Future of Gas Turbine Technology
, Brussels.
7.
Tiwari
,
A.
, and
Roy
,
R.
, 2002, “
Application of Generalised Regression GA for Designing a Turbine Blade Cooling System
,”
Genetic and Evolutionary Computation Conference, Workshop Program
, New York, pp.
108
113
.
8.
Atashkari
,
K.
,
Nariman-Zadeh
,
N.
,
Pilechi
,
A.
,
Jamali
,
A.
, and
Yao
,
X.
, 2005, “
Thermodynamic Pareto Optimization of Turbojet Engines Using Multi-Objective Genetic Algorithms
,”
Int. J. Therm. Sci.
1290-0729,
44
(
11
), pp.
1061
1071
.
9.
Oyama
,
A.
,
Liou
,
M.-S.
, and
Obayashi
,
S.
, 2004, “
Transonic Axial-Flow Blade Optimization Using Evolutionary Algorithms and a Three-Dimensional Navier-Stokes Solver
,”
J. Propul. Power
0748-4658,
20
(
4
), pp.
612
619
.
10.
Oksuz
,
O.
, and
Akmandor
,
I. S.
, 2005, “
Turbine Blade Shape Aerodynamic Design Using Artificial Intelligence
,” ASME Paper No. GT2005-68094.
11.
Oksuz
,
O.
, and
Akmandor
,
I. S.
, 2001, “
Turbine Cascade Optimization Using an Euler Coupled Genetic Algorithm
,” Paper No. ISABE-2001-1234.
12.
Ratle
,
A.
, 2001, “
Kriging as a Surrogate Fitness Landscape in Evolutionary Optimization
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
15
(
1
), pp.
37
49
.
13.
El-Beltagy
,
M. A.
,
Nair
,
P. B.
, and
Keane
,
A. J.
, 1999, “
Metamodelling Techniques for Evolutionary Optimization of Computationally Expensive Problems: Promise and Limitations
,”
Proceedings of the Genetic and Evolutionary Computation Conference
, pp.
196
203
.
14.
Jin
,
Y.
,
Olhofer
,
M.
, and
Sendhoff
,
B.
, 2002, “
A Framework for Evolutionary Optimization With Approximate Fitness Functions
,”
IEEE Trans. Evol. Comput.
1089-778X,
6
(
5
), pp.
481
494
.
15.
Song
,
W. B.
, 1998, “
Shape Optimisation of Turbine Blades
,” Ph.D. thesis, University of Southampton, Southampton, England.
16.
Pierret
,
S.
, 1999, “
Designing Turbomachinery Blades by Means of the Function Approximation Concept Based on Artificial Neural Network, Genetic Algorithm, and the Navier-Stokes Equations
,” Ph.D. thesis, VKI, Belgium.
17.
Yang
,
S.
, 2006, “
On the Design of Diploid Genetic Algorithms for Problem Optimization in Dynamic Environments
,”
IEEE Congress on Evolutionary Computation
, Vancouver.
18.
Branke
,
J.
, 2002,
Evolutionary Optimization in Dynamic Environments
,
Kluwer
,
Dordrecht, The Netherlands
.
19.
Grefenstette
,
J. J.
, 1992, “
Genetic Algorithms for Changing Environments
,”
Parallel Problem Solving From Nature 2
,
Elsevier
,
Brussels, Belgium
, pp.
137
144
.
20.
Yang
,
S.
, 2005, “
Memory-Based Immigrants for Genetic Algorithms in Dynamic Environments
,”
Proceedings of the Genetic and Evolutionary Computation Conference
, Vol.
2
, pp.
1115
1122
.
21.
Cobb
,
H. G.
, and
Grefenstette
,
J. J.
, 1993, “
Genetic Algorithms for Tracking Changing Environments
,”
Proceedings of the Fifth International Conference on Genetic Algorithms
, pp.
523
530
.
22.
Branke
,
J.
, 1999, “
Memory Enhanced Evolutionary Algorithms for Changing Optimization Problems
,”
Proceedings of the Congress on Evolutionary Computation
, Vol.
3
, pp.
1875
1882
.
23.
Louis
,
S. J.
, and
Xu
,
Z.
, 1996, “
Genetic Algorithms for Open Shop Scheduling and Re-Scheduling
,”
Proceedings of the 11th ISCA International Conference on Computers and Their Applications
, pp.
99
102
.
24.
Mori
,
N.
,
Kita
,
H.
, and
Nishikawa
,
Y.
, 1997, “
Adaptation to Changing Environments by Means of the Memory Based Thermodynamical Genetic Algorithm
,”
Proceedings of the Seventh International Conference on Genetic Algorithms
, pp.
299
306
.
25.
Simoes
,
A.
, and
Costa
,
E.
, 2003, “
An Immune System-Based Genetic Algorithm to Deal With Dynamic Environments: Diversity and Memory
,”
Proceedings of the Sixth International Conference on Neural Networks and Genetic Algorithms
, pp.
168
174
.
26.
Trojanowski
,
K.
, and
Michalewicz
,
Z.
, 1999, “
Searching for Optima in Nonstationary Environments
,”
Proceedings of the Congress on Evolutionary Computation
, pp.
1843
1850
.
27.
Branke
,
J.
,
Kaussler
,
T.
,
Schmidth
,
C.
, and
Schmeck
,
H.
, 2000, “
A Multipopulation Approach to Dynamic Optimization Problems
,”
Proceedings of the Adaptive Computing in Design and Manufacturing
, pp.
299
308
.
28.
Goldberg
,
D. E.
, and
Smith
,
R. E.
, 1987, “
Nonstationary Function Optimization Using Genetic Algorithms With Dominance and Diploidy
,”
Proceedings of the Second International Conference on Genetic Algorithms
, pp.
59
68
.
29.
Ng
,
K. P.
, and
Wong
,
K. C.
, 1995, “
A New Diploid Scheme and Dominance Change Mechanism for Non-Stationary Function Optimization
,”
Proceedings of the Sixth International Conference on Genetic Algorithms
.
30.
Ryan
,
C.
, 1994, “
The Degree of Loneness
,”
Proceedings of the 1994 ECAI Workshop on Genetic Algorithms
.
31.
Abbott
,
I. H.
,
Von Doenhoff
,
A. E.
, and
Stivers
,
L. S.
, 1945, “
Summary of Airfoil Data
,” NACA Report No. 824.
32.
Oksuz
,
O.
, and
Akmandor
,
I. S.
, 2001, “
Aerodynamic Optimization of Turbomachinery Cascades Using Euler/Boundary Layer Coupled Genetic Algorithms
,” Paper No. AIAA-2001-2577.
33.
Pritchard
L. J.
, 1985, “
An Eleven Parameter Axial Turbine Airfoil Geometry Model
,” ASME Paper No. 85-GT-219.
34.
Trigg
,
M. A.
,
Tubby
,
G. R.
, and
Sheard
,
A. G.
, 1999, “
Automatic Genetic Optimization Approach to Two-Dimensional Blade Profile Design for Steam Turbines
,”
ASME J. Turbomach.
0889-504X,
121
(
1
), pp.
11
17
.
35.
Anders
,
J. M.
, and
Haarmeyer
,
J.
, 1999, “
A Parametric Blade Design System
,”
Turbomachinery Blade Design Systems
,
von Karman Institute for Fluid Dynamics
,
Brussels, Belgium
.
36.
Yamamoto
,
K.
, and
Inoue
,
O.
, 1995, “
Applications of Genetic Algorithm to Aerodynamic Shape Optimization
,” Paper No. AIAA-95-1650.
37.
Farin
,
G.
, 1993,
Curves and Surfaces for Computer Aided Geometric Design
,
Academic
,
New York
.
38.
Faux
,
I. D.
, and
Pratt
,
M. J.
, 1979,
Computational Geometry for Design and Manufacture
,
Ellis Horwood
,
West Sussex, England
.
40.
Rodi
,
W.
, 1975, “
A Note on the Empirical Constant in the Kolmogorov-Prandtl Eddy-Viscosity Expression
,”
ASME J. Fluids Eng.
0098-2202,
97
, pp.
386
389
.
42.
Lefebvre
,
S.
,
Hornus
,
S.
, and
Nyret
,
F.
, 2005, “
Octree Textures on the GPU
,”
Programming Techniques for High-Performance Graphics and General-Purpose Computation
,
Addison-Wesley Professional
, pp.
595
613
.
43.
Boletis
,
E.
,
Sieverding
,
C. H.
, and
van Hove
,
W.
, 1990, “
Test Case E/TU-1 Low Speed Annular Turbine Blade Row
,” AGARD Report No. AR-275.
44.
Evers
,
B.
, and
Kötzing
,
P.
, 1990, “
Test Case E/TU-4 4-Stage Low Speed Turbine
,” AGARD Report No. AR-275.
45.
Osyczka
,
A.
, and
Kundu
,
S.
, 1995, “
A New Method to Solve Generalized Multicriteria Optimization Problems Using the Simple Genetic Algorithm
,”
Struct. Optim.
0934-4373,
10
(
2
), pp.
94
99
.
46.
Osyczka
,
A.
, 2002,
Evolutionary Algorithms for Single and Multicriteria Design Optimization
,
Physica-Verlag
,
New York
, pp.
93
113
.
You do not currently have access to this content.