An experimental analysis for the evaluation of adiabatic and overall effectiveness of an effusion cooling geometry is presented in this paper. Chosen configuration is a flat plate with 98 holes, with a feasible arrangement for a turbine endwall. Fifteen staggered rows with equal spanwise and streamwise pitches (Sx/D=Sy/D=8.0), a length to diameter ratio of 42.9 and an injection angle of 30 deg are investigated. Measurements have been done on two different test samples made both of plastic material and stainless steel. Adiabatic tests were carried out in order to obtain adiabatic effectiveness bidimensional maps. Even if a very low conductivity material polyvinyl chloride was used, adiabatic tests on a typical effusion geometry suffer, undoubtedly, from conductive phenomena: a full three-dimensional finite element method postprocessing procedure for gathered experimental data was therefore developed for reckoning thermal fluxes across the surface and then correctly obtaining adiabatic effectiveness distributions. The objective of the tests performed on the conductive plate, having the same flow parameters as the adiabatic ones, was the estimation of overall efficiency of the cooled region. Experimental measurements were carried out imposing two different crossflow Mach numbers, 0.15 and 0.40, and varying blowing ratio from 0.5 to 1.7; effectiveness of the cooled surface was evaluated with a steady-state technique, using thermochromic liquid crystal wide band formulation. Results show that the postprocessing procedure correctly succeeded in deducting undesired thermal fluxes across the plate in adiabatic effectiveness evaluation. The increasing blowing ratio effect leads to lower adiabatic effectiveness mean values, while it makes overall effectiveness to grow. Finally, Reynolds-averaged Navier–Stokes steady-state calculations were performed employing an open source computational fluid dynamics code: an adiabatic case has been simulated using both a standard and an anisotropic turbulence model. Numerical achievements have then been compared with experimental measurements.

1.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
613
621
.
2.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
London
, pp.
129
249
.
3.
Gustafsson
,
K. M. B.
, 2001, “
Experimental Studies of Effusion Cooling
,” Ph.D. thesis, Department of Thermo and Fluid Dynamics, Chalmers University of Technology, SE-412 96 Goteborg, Sweden.
4.
Sasaki
,
M.
,
Takahara
,
K.
,
Kumagai
,
T.
, and
Hamano
,
M.
, 1979, “
Film Cooling Effectiveness for Injection From Multirow Holes
,”
ASME J. Eng. Power
0022-0825,
101
(
1
), pp.
101
108
.
5.
Mayle
,
R. E.
, and
Camarata
,
F. J.
, 1975, “
Multihole Cooling Film Effectiveness and Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
97
(
2
), pp.
534
538
.
6.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Gupta
,
M. L.
,
Mkpadi
,
M. C.
, and
Tirmahi
,
A.
, 1990, “
Full Coverage Discrete Hole Film Cooling: The Influence of the Number of Holes and Pressure Loss
,” ASME Paper No. 90-GT-61.
7.
Andrews
,
G. E.
,
Bazdidi-Tehrani
,
F.
,
Hussain
,
C. I.
, and
Pearson
,
J. P.
, 1991, “
Small Diameter Film Cooling Hole Heat Transfer: The Influence of Hole Length
,” ASME Paper No. 91-GT-344.
8.
Andrews
,
G. E.
,
Khalifa
,
I. M.
,
Asere
,
A. A.
, and
Bazdidi-Tehrani
,
F.
, 1995, “
Full Coverage Effusion Film Cooling With Inclined Holes
,” ASME Paper No. 95-GT-274.
9.
Harrington
,
M. K.
,
McWaters
,
M. A.
,
Bogard
,
D. G.
,
Lemmon
,
C. A.
, and
Thole
,
K. A.
, 2001, “
Full-Coverage Film Cooling With Short Normal Injection Holes
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
798
805
.
10.
Martiny
,
M.
,
Schulz
,
A.
, and
Witting
,
S.
, 1995, “
Full Coverage Film Cooling Investigations: Adiabatic Wall Temperature and Flow Visualization
,” ASME Paper No. 95-WA/HT-4.
11.
Metzger
,
D.
,
Takeuchi
,
D.
, and
Kuenstler
,
P.
, 1973, “
Effectiveness and Heat Transfer With Full-Coverage Film Cooling
,”
ASME J. Eng. Power
0022-0825,
95
, pp.
180
184
.
12.
Crawford
,
M. E.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
, 1980, “
Full-Coverage Film Cooling—Part 1: Comparison of Heat Transfer Data for Three Injection Angles
,”
J. Eng. Power
0022-0825,
102
, pp.
1000
1005
.
13.
Kelly
,
G. B.
, and
Bogard
,
D. G.
, 2003, “
An Investigation of the Heat Transfer for Full Coverage Film Cooling
,” ASME Paper No. GT2003-38716.
14.
Colban
,
W.
,
Thole
,
K. A.
, and
Haendler
,
M.
, 2006, “
A Comparison of Cylindrical and Fan-Shaped Film-Cooling Holes on a Vane Endwall at Low and High Freestream Turbulence Levels
,” ASME Paper No. GT2006-90021.
15.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
, 2005, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film Cooled Endwall
,” ASME Paper No. GT2005-68544.
16.
Arcangeli
,
L.
,
Facchini
,
B.
,
Surace
,
M.
, and
Tarchi
,
L.
, 2008, “
Correlative Analysis of Effusion Cooling Systems
,”
ASME J. Turbomach.
0889-504X,
130
(
1
), p.
011016
.
17.
Facchini
,
B.
,
Surace
,
M.
, and
Tarchi
,
L.
, 2005, “
Impingement Cooling for Modern Combustors: Experimental Analysis and Preliminary Design
,” ASME Paper No. GT2005-68361.
18.
Facchini
,
B.
,
Surace
,
M.
,
Tarchi
,
L.
,
Toni
,
L.
,
Abba
,
L.
,
Arcangeli
,
L.
, and
Traverso
,
S.
, 2007, “
Different Manufacturing Solutions of Fan-Shaped Film-Cooling Holes—Part I: Experimental Analysis
,” GTSJ-IGTC, Paper No. TS-108.
19.
Surace
,
M.
, 2004, “
Investigation of Impingement Systems for Gas Turbine Combustor Cooling
,” Ph.D. thesis, University of Florence, Florence.
20.
Roach
,
P. E.
, 1987, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
0142-727X,
8
(
2
), pp.
82
92
.
21.
Lakshminarayana
,
B.
, 1996,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
.
22.
ASME
, 1985, “
Measurement Uncertainty
,” Instrument and Apparatus, Vol. ANSI/ASME PTC 19.1-1985 of Performance Test Code, ASME.
23.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
24.
Brauckmann
,
D.
, and
von Wolfersdorf
,
J.
, 2005, “
Application of Steady State and Transient IR-Thermography Measurements to Film Cooling Experiments for a Row of Shaped Holes
,” ASME Paper No. GT2005-68035.
25.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
, 1998,
Handbook of Heat Transfer
,
3rd ed.
,
McGraw-Hill
,
New York
.
26.
Ireland
,
P. T.
,
Wang
,
Z.
, and
Jones
,
T. V.
, 1993, “
Liquid Crystal Heat Transfer Measurements
,”
Measurements Techniques
(
Lecture Series 1993-05
),
von Karman Institute for Fluid Dynamics
,
Rhode-St-Genèse, Belgium
.
27.
Camci
,
C.
, 1995, “
Liquid Crystal Thermography
,”
Temperature Measurements
(
Lecture Series 1996-07
),
von Karman Institute for Fluid Dynamics
,
Rhode-St-Genese BE
.
28.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
969
986
.
29.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2002, “
Heat Flux Reduction From Film Cooling and Correlation of Heat Transfer Coefficients From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
699
709
.
30.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
800
806
.
31.
L’Ecuyer
,
M. R.
and
Soechting
,
F. O.
, 1985, “
A Model for Correlating Flat Plate Film Cooling Effectiveness for Rows of Round Holes
,”
AGARD Heat Transfer and Cooling in Gas Turbines
, Paper No. N86-29823 21-07.
32.
OpenCFD
, 2005, “
Openfoam User Guide
,” OpenCFD Limited, http://www.opencfd.co.ukhttp://www.opencfd.co.uk.
33.
OpenCFD
, 2005, “
Openfoam Programmer Guide
,” OpenCFD Limited, http://www.opencfd.co.ukhttp://www.opencfd.co.uk.
34.
Mangani
,
L.
,
Bianchini
,
C.
,
Andreini
,
A.
, and
Facchini
,
B.
, 2007, “
Development and Validation of a C++ Object Oriented CFD Code for Heat Transfer Analysis
,” ASME Paper No. AJ-1266.
35.
Mangani
,
L.
, and
Andreini
,
A.
, 2008, “
Application of a New Object-Oriented CFD Code to Heat Transfer Analysis
,” ASME Paper No. GT2008-51118.
36.
Di Carmine
,
E.
,
Facchini
,
B.
,
Mangani
,
L.
,
Abba
,
L.
,
Arcangeli
,
L.
, and
Traverso
,
S.
, 2007, “
Different Manufacturing Solutions of Fan-Shaped Cooling Holes—Part II: Numerical Analysis
,”
GTSJ-IGTC
, Paper No. TS-107.
37.
Lakehal
,
D.
,
Theodoris
,
G. S.
, and
Rodi
,
W.
, 2001, “
Three-Dimensional Flow and Heat Transfer Calculations of Film Cooling at the Leading Edge of a Symmetrical Turbine Blade Model
,”
Int. J. Heat Fluid Flow
0142-727X,
22
, pp.
113
122
.
38.
Azzi
,
A.
, and
Jubran
,
B. A.
, 2001, “
Numerical Modeling of Film Cooling From Short Length Stream-Wise Injection Holes
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
345
353
.
39.
Azzi
,
A.
and
Lakehal
,
D.
, 2001, “
Perspectives in Modeling Film Cooling of Turbine Blades by Transcending Conventional Two-Equation Turbulence Models
,” ASME Paper No. GT2005-68155.
40.
Azzi
,
A.
, and
Lakehal
,
D.
, 2002, “
Perspectives in Modeling Film Cooling of Turbine Blades by Transcending Conventional Two-Equation Turbulence Models
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
472
484
.
41.
Lakehal
,
D.
, 2002, “
Near-Wall Modeling of Turbulent Convective Heat Transport in Film Cooling of Turbine Blades With the Aid of Direct Numerical Simulation Data
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
485
498
.
42.
Bacci
,
A.
, and
Facchini
,
B.
, 2007, “
Turbulence Modeling for the Numerical Simulation of Film and Effusion Cooling Flows
,” ASME Paper No. GT2007-27182.
You do not currently have access to this content.