Laminar-turbulent transition behavior is studied near the leading edge of an outlet stator blade in a low-speed 1.5-stage axial-flow research compressor. The stator is a typical controlled diffusion design with a circular arc leading edge profile. Slow-response surface pressure distribution measurements are compared with numerical predictions from the quasi-two-dimensional flow solver, MISES. These both show a strong flow acceleration around each side of the circular arc, followed by a rapid deceleration near each blend point of the arc to the main surface profile. The relative magnitude of the localized overspeeds varies significantly over the wide range of stator flow incidence investigated. The unsteady boundary layer behavior on the stator is studied using a midspan array of surface-mounted hot-film sensors. On the suction surface, wake-induced transitional and turbulent strips are observed to originate close to the leading edge. The boundary layer approaches separation near the leading edge blend point on the suction surface, but this does not always lead to localized turbulent breakdown or continuous turbulent flow: a significant portion of the flow on the forward part of the surface remains laminar between the wake-induced transitional strips. At high positive incidence the wake-induced transitional strips originate near the leading edge blend point, but their growth is suppressed by the strong flow acceleration. On the pressure surface, a small separation bubble forms near the leading edge blend point resulting in almost continuous turbulent flow over the whole incidence range studied.

1.
Walraevens
,
R. E.
, and
Cumpsty
,
N. A.
, 1995, “
Leading Edge Separation Bubbles on Turbomachine Blades
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
115
126
.
2.
Tain
,
L.
, and
Cumpsty
,
N. A.
, 2000, “
Compressor Blade Leading Edges in Subsonic Compressible Flow
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
214
(
1
), pp.
221
242
.
3.
Roberts
,
W. B.
, 1995, “
Advanced Turbofan Blade Refurbishment Technique
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
666
667
.
4.
Smith
,
L. H.
, Jr.
, 1995, “
Discussion: “Leading Edge Separation Bubbles on Turbomachine Blades” (Walraevens, R. E., and Cumpsty, N. A., 1995, ASME J. Turbomach., 117, pp. 115–125)
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
125
.
5.
Cumpsty
,
N. A.
, 1989,
Compressor Aerodynamics
,
Longman Scientific and Technical
,
Essex, UK
.
6.
Sanger
,
N. L.
, and
Shreeve
,
R. P.
, 1986, “
Comparison of Calculated and Experimental Cascade Performance for Controlled-Diffusion Compressor Stator Blading
,”
ASME J. Turbomach.
0889-504X,
108
, pp.
42
50
.
7.
Hodson
,
H. P.
, 1985, “
Boundary-Layer Transition and Separation Near the Leading Edge of a High-Speed Turbine Blade
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
127
134
.
8.
Hobson
,
G.
,
Hansen
,
D.
,
Schnorenberg
,
D.
, and
Grove
,
D.
, 2001, “
Effect of Reynolds Number on Separation Bubbles on Compressor Blades in Cascade
,”
J. Propul. Power
0748-4658,
17
(
1
), pp.
154
162
.
9.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 2 of 4—Compressors
,”
ASME J. Turbomach.
0889-504X,
119
(
3
), pp.
426
444
.
10.
Liu
,
H.
,
Liu
,
B.
,
Li
,
L.
, and
Jiang
,
H.
, 2003, “
Effect of Leading-Edge Geometry on Separation Bubble on a Compressor Blade
,” ASME Paper No. GT-2003-38217.
11.
Wheeler
,
A. P. S.
,
Miller
,
R. J.
, and
Hodson
,
H. P.
, 2006, “
The Effect of Wake-Induced Structures on Compressor Boundary Layers
,” ASME Paper No. GT2006-90892.
12.
Henderson
,
A. D.
,
Walker
,
G. J.
, and
Hughes
,
J. D.
, 2006, “
Unsteady Transition Phenomena at a Compressor Blade Leading Edge
,” ASME Paper No. GT2006-90641.
13.
Drela
,
M.
, and
Giles
,
M. B.
, 1987, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
0001-1452,
25
(
10
), pp.
1347
1355
.
14.
Walker
,
G. J.
,
Hughes
,
J. D.
, and
Solomon
,
W. J.
, 1999, “
Periodic Transition on an Axial Compressor Stator: Incidence and Clocking Effects: Part I—Experimental Data
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
398
407
.
15.
Henderson
,
A. D.
,
Walker
,
G. J.
, and
Hughes
,
J. D.
, 2006, “
Influence of Turbulence on Wake Dispersion and Blade Row Interaction in an Axial Compressor
,”
ASME J. Turbomach.
0889-504X,
128
(
1
), pp.
150
157
.
16.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
ASME J. Turbomach.
0889-504X,
119
(
1
), pp.
114
127
.
17.
Schlichting
,
H.
, 1968,
Boundary-Layer Theory
, 6th ed.,
McGraw-Hill
,
New York
.
18.
Hodson
,
H. P.
,
Huntsman
,
I.
, and
Steele
,
A. B.
, 1994, “
An Investigation of Boundary Layer Development in a Multistage LP Turbine
,”
ASME J. Turbomach.
0889-504X,
116
(
3
), pp.
375
383
.
19.
Solomon
,
W. J.
, 1996, “
Unsteady Boundary Layer Transition on Axial Compressor Blades
,” Ph.D. thesis, University of Tasmania, Australia.
20.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Hughes
,
J. D.
, 1999, “
Periodic Transition on an Axial Compressor Stator: Incidence and Clocking Effects: Part II—Transition Onset Predictions
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
408
415
.
21.
Köller
,
U.
,
Mönig
,
R.
,
Küsters
,
B.
, and
Schreiber
,
H. A.
, 2000, “
Development of Advanced Compressor Aerofoils for Heavy-Duty Gas Turbines: Part 1—Design and Optimization
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
397
405
.
22.
Drela
,
M.
, and
Youngren
,
H.
, 1998, “
A User’s Guide to MISES 2.53
,” MIT Computational Aerospace Sciences Laboratory, Technical Report.
23.
Boiko
,
A. V.
,
Grek
,
G. R.
,
Dovgal
,
A. V.
, and
Kozlov
,
V. V.
, 2002,
The Origin of Turbulence in Near-Wall Flows
,
Springer
,
Berlin
.
24.
D’Ovidio
,
A.
,
Harkins
,
J. A.
, and
Gostelow
,
J. P.
, 2001, “
Turbulent Spots in Strong Adverse Pressure Gradients. Part 2—Spot Propagation and Spreading Rates
,” ASME Paper No. 2001-GT-406.
25.
Zhong
,
S.
,
Chong
,
T. P.
, and
Hodson
,
H. P.
, 2003, “
A Comparison of Spreading Angles of Turbulent Wedges in Velocity and Thermal Boundary Layers
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
267
274
.
26.
Warnack
,
D.
, and
Fernholz
,
H. H.
, 1998, “
The Effects of a Favourable Pressure Gradient and of the Reynolds Number on an Incompressible Axisymmetric Turbulent Boundary Layer. Part 2. The Boundary Layer With Relaminarization
,”
J. Fluid Mech.
0022-1120,
359
, pp.
357
381
.
You do not currently have access to this content.