This first paper describes the conjugate heat transfer (CHT) method and its application to the performance and lifetime prediction of a high pressure turbine blade operating at a very high inlet temperature. It is the analysis tool for the aerothermal optimization described in a second paper. The CHT method uses three separate solvers: a Navier–Stokes solver to predict the nonadiabatic external flow and heat flux, a finite element analysis (FEA) to compute the heat conduction and stress within the solid, and a 1D aerothermal model based on friction and heat transfer correlations for smooth and rib-roughened cooling channels. Special attention is given to the boundary conditions linking these solvers and to the stability of the complete CHT calculation procedure. The Larson–Miller parameter model is used to determine the creep-to-rupture failure lifetime of the blade. This model requires both the temperature and thermal stress inside the blade, calculated by the CHT and FEA. The CHT method is validated on two test cases: a gas turbine rotor blade without cooling and one with five cooling channels evenly distributed along the camber line. The metal temperature and thermal stress distribution in both blades are presented and the impact of the cooling channel geometry on lifetime is discussed.

1.
Verstraete
,
T.
,
Amaral
,
S.
,
Van den Braembussche
,
R.
, and
Arts
,
T.
, 2010, “
Design and Optimization of the Internal Cooling Channels of a High Pressure Turbine Blade—Part II: Optimization
,”
ASME J. Turbomach.
0889-504X,
132
(
2
), p.
021014
.
2.
Han
,
Z. X.
,
Dennis
,
B. H.
, and
Dulikravich
,
G. S.
, 2000, “
Simultaneous Prediction of External Flow-Field and Temperature in Internally Cooled 3-D Turbine Blade Material
,” ASME Paper No. 2000-GT-253.
3.
Montenay
,
A.
,
Paté
,
L.
, and
Duboué
,
J.
, 2000, “
Conjugate Heat Transfer Analysis of an Engine Internal Cavity
,” ASME. Paper No. 2000-GT-282.
4.
Verdicchio
,
J. A.
,
Chew
,
J. W.
, and
Hills
,
N. J.
, 2001, “
Coupled Fluid/Solid Heat Transfer Computation for Turbine Discs
,” ASME. Paper No. 2001-GT-0205.
5.
Heidmann
,
J. D.
,
Kassab
,
A. J.
,
Divo
,
E. A.
,
Rodriguez
,
F.
, and
Steinthorsson
,
E.
, 2003, “
Conjugate Heat Transfer Effects on a Realistic Film-cooled Turbine Vane
,” ASME, Paper No. GT2003-38553.
6.
York
,
W. D.
, and
Leylek
,
J. H.
, 2003, “
Three-Dimensional Conjugate Heat Transfer Simulation of an Internally-Cooled Gas Turbine Vane
,” ASME Paper No. GT2003-38551.
7.
Bohn
,
D.
,
Heuer
,
T.
, and
Kusterer
,
K.
, 2003, “
Conjugate Flow and Heat Transfer Investigation of a Turbo Charger—Part I: Numerical Results
,” ASME Paper No. GT2003-3844.
8.
Bohn
,
D.
,
Bonhoff
,
B.
, and
Schonenborn
,
H.
, 1995. “
Combined Aerodynamic and Thermal Analysis of a Turbine Nozzle Guide Vane
,”
International Gas Turbine Congress
, Paper No. 95-108.
9.
Garg
,
V. K.
, 2002, “
Heat Transfer Research on Gas Turbine Airfoils at NASA GRC
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
109
136
.
10.
Lassaux
,
G.
,
Daux
,
S.
, and
Descamps
,
L.
, 2004. “
Conjugate Heat Transfer Analysis of a Tri-Dimensional Turbine Blade Internal Cavity
,”
24th ICAS
.
11.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
, 2007, “
Numerical Study of the Heat Transfer in Micro Gas Turbines
,”
ASME J. Turbomach.
0889-504X,
129
(
4
), pp.
835
841
.
12.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
, 2007, “
A Comparison of Conjugate Heat Transfer Methods Applied to an Axial Helium Turbine
,”
Proc. Inst. Mech. Eng., Part A
0957-6509 J. Power Energy,
221
, pp.
981
989
.
13.
Verstraete
,
T.
, 2008, “
Multi-Disciplinary Turbomachinery Component Optimization Considering Performance, Stress and Internal Heat Transfer
,” Ph.D. thesis, Universiteit Gent/von Karman Institute for Fluid Dynamics.
14.
Heselhaus
,
A.
, 1998, “
A Hybrid Coupling Scheme and Stability Analysis for Coupled Solid/Fluid Turbine Blade Temperature Calculations
,” ASME. Paper No. 98-GT-88.
15.
Vass
,
P.
,
Rambaud
,
P.
,
Arts
,
T.
, and
Benocci
,
C.
, 2007, “
Numerical Investigation of Flow and Heat Transfer in a Ribbed Square Duct Applying LES
,”
Proceedings of the Seventh European Conference on Turbomachinery
, pp.
1051
1061
.
16.
Dittus
,
F. W.
, and
Bölter
,
M. L. K.
, 1930,
Heat Transfer in Automobile Radiators of the Tubular Type
, Vol.
2
,
University of California Publications on Engineering
,
Berkeley, CA
, p.
443
.
17.
Bejan
,
A.
, ed., 1995,
Convective Heat Transfer
,
Wiley
,
New York
.
18.
Incropera
,
F.
, and
DeWitt
,
D.
, 2002,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
19.
Cakan
,
M.
, 2000, “
Aero-Thermal Investigation of Fixed Rib-Roughened Internal Cooling Passages
,” Ph.D. thesis, Universit Catholique de Louvain/von Karman Institute for Fluid Dynamics.
20.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
, 2006, “
Detached Eddy Simulation of Flow and Heat Transfer in Fully Developed Rotating Internal Cooling Channel With Normal Ribs
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
351
370
.
21.
Kai
,
L. C.
,
Hongwu
,
D.
,
Zhi
,
T.
,
Shuiting
,
D.
, and
Xuguoqiang
, 2006, “
Prediction of Turbulent Flow and Heat Transfer Within Rotating U-Shaped Passages
,”
Heat Transfer Asian Research
,
35
, pp.
410
420
.
22.
Dowling
,
N.
, 2007,
Mechanical Behaviors of Materials
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
23.
Ibanez
,
A. R.
,
Srinivasan
,
V. S.
, and
Saxena
,
A.
, 2006, “
Creep Deformation and Rupture Behavior of Directionally Solidified GTD 111 Superalloy
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
29
, pp.
1010
1020
.
24.
Arnone
,
A.
, 1994, “
Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method
,”
ASME J. Turbomach.
0889-504X,
116
(
3
), pp.
435
445
.
25.
Samtech Group
, 2006, SAMCEF FEA code www.samcef.comwww.samcef.com.
26.
Shepard
,
D.
, 1968. “
A Two-Dimensional Interpolation Function for Irregularly Spaced Data
,”
Proceedings of the 23rd ACM National Conference
, pp.
517
524
.
27.
Key
,
N.
, and
Arts
,
T.
, 2006, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at High-Speed Conditions
,”
ASME J. Turbomach.
0889-504X,
128
(
2
), pp.
213
220
.
28.
Roy
,
R.
,
Xu
,
G.
, and
Feng
,
J.
, 2001, “
A Study of Convective Heat Transfer in a Model Rotor-Stator Disk Cavity
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
621
632
.
You do not currently have access to this content.