The sealing of the stator-rotor gap and rotor-platform cooling are vital to the safe operation of the high-pressure turbine. Contrary to the experience in subsonic turbines, this paper demonstrates the potential to improve the efficiency in transonic turbines at certain rim seal rates. Two types of cooling techniques were investigated: purge gas ejected out of the cavity between the stator rim and the rotor disk, and cooling at the rotor-platform. The tests were carried out in a full annular stage fed by a compression tube at M2is=1.1, Re=1.1×106, and at temperature ratios reproducing engine conditions. The stator outlet was instrumented to allow the aerothermal characterization of the purge flow. The rotor blade was heavily instrumented with fast-response pressure sensors and double-layer thin film gauges. The tests are coupled with numerical calculations performed using the ONERA’s code ELSA. The results indicate that the stator-rotor interaction is significantly affected by the stator-rim seal, both in terms of heat transfer and pressure fluctuations. The flow exchange between the rotor disk cavity and the mainstream passage is mainly governed by the vane trailing edge shock patterns. The purge flow leads to the appearance of a large coherent vortex structure on the suction side of the blade, which enhances the overall heat transfer coefficient due to the blockage effect created. The impact of the platform cooling is observed to be restricted to the platform, with negligible effects on the blade suction side. The platform cooling results in a clear attenuation of pressure pulsations at some specific locations. The experimental and computational fluid dynamics results show an increase in the turbine performance compared with the no rim seal case. A detailed loss breakdown analysis helped to identify the shock loss as the major loss source. The presented results should help designers improve the protection of the rotor platform while minimizing the amount of coolant used.

1.
Paniagua
,
G.
,
Denos
,
R.
, and
Almeida
,
S.
, 2004, “
Effect of the Hub Endwall Cavity Flow on the Flow Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
578
586
.
2.
Ong
,
J. H. P.
,
Miller
,
R. J.
, and
Uchida
,
S.
, 2006, “
The Effect of Coolant Injection on the Endwall Flow of High-Pressure Turbine
,” ASME Paper No. GT2006-91060.
3.
McLean
,
C.
,
Camci
,
G.
, and
Glezer
,
B.
, 2001, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High Pressure Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
687
703
.
4.
Phadke
,
U. P.
, and
Owen
,
J. M.
, 1988, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems
,”
Int. J. Heat Fluid Flow
0142-727X,
9
, pp.
98
117
.
5.
Ko
,
S. H.
, and
Rhode
,
D. L.
, 1992, “
Thermal Details in a Rotor-Stator Cavity at Engine Conditions With a Mainstream
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
446
453
.
6.
Laroche
,
E.
,
Desportes de la Fosse
,
S.
,
Djaoui
,
M.
,
Debuchy
,
R.
, and
Pate
,
L.
, 1999, “
A Combined Experimental and Numerical Investigation of the Flow in a Heated Rotor/Stator Cavity With a Centripetal Injection
,” ASME Paper No. 99-GT-170.
7.
Pfau
,
A.
,
Treiber
,
M.
,
Sell
,
M.
, and
Gyarmathy
,
G.
, 2001, “
Flow Interaction From the Exit Cavity of an Axial Turbine Blade Row Labyrinth Seal
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
342
352
.
8.
Anker
,
J. E.
, and
Mayer
,
J. F.
, 2002, “
Simulation of the Interaction of Labyrinth Seal Leakage Flow and Main Flow in an Axial Turbine
,” ASME Paper No. 2002-GT-30348.
9.
Hunter
,
S. D.
, and
Manwaring
,
S. R.
, 2000, “
Endwall Cavity Flow Effects on Gas Path Aerodynamics in an Axial Flow Turbine
,” ASME Paper No. 2000-GT-651.
10.
Rosic
,
B.
, and
Denton
,
J. D.
, 2006, “
The Control of Shroud Leakage Loss by Reducing Circumferential Mixing
,” ASME Paper No. GT2006-90946.
11.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
, 1995, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
175
183
.
12.
Bohn
,
D.
,
Rudzinski
,
B. E.
,
Surken
,
N.
, and
Gartner
,
W.
, 2000, “
Experimental and Numerical Investigations of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,” ASME Paper No. 2000-GT-284.
13.
Roy
,
R. P.
,
Xu
,
G.
,
Feng
,
J.
, and
Kang
,
S.
, 2001, “
Pressure Field and Main-Stream Gas Ingestion in a Rotor-Stator Disk Cavity
,” ASME Paper No. 2001-GT-0564.
14.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
, 2003, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
505
512
.
15.
Cao
,
C.
,
Chew
,
J. W.
,
Millington
,
P. R.
, and
Hogg
,
S. I.
, 2003, “
Interaction of Rim Seal and Annulus Flows in an Axial Flow Turbine
,” ASME Paper No. 2003-GT-38368.
16.
Roy
,
R. P.
,
Feng
,
J.
,
Narzary
,
D.
,
Saurabh
,
P.
, and
Paolillo
,
R. E.
, 2004, “
Experiments on Gas Ingestion Through Axial-Flow Turbine Rim Seals
,” ASME Paper No. 2004-GT-53394.
17.
Roy
,
R. P.
,
Zhou
,
D. W.
,
Ganesan
,
S.
,
Johnson
,
B. V.
,
Wang
,
C. -Z
, and
Paolillo
,
R. E.
, 2007, “
The Flow Field and Main Gas Ingestion in a Rotor-Stator Cavity
,” ASME Paper No. GT2007-27671.
18.
Marini
,
R.
, and
Girgis
,
S.
, 2007, “
The Effect of Blade Leading Edge Platform Shape on Upstream Disk Cavity to Mainstream Flow Interaction of a High-Pressure Turbine Stage
,” ASME Paper No. GT2007-27429.
19.
Montomoli
,
F.
,
Massini
,
M.
,
Maceli
,
N.
,
Cirri
,
M.
,
Lombardi
,
L.
,
Ciani
,
A.
,
D’Ercole
,
M.
, and
de Prosperis
,
R.
, 2006, “
Interaction of Wheelspace Coolant and Main Flow in a New Aeroderivative LPT
,” ASME Paper No. GT2006-90877.
20.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
524
529
.
21.
Harasgama
,
S. P.
, and
Burton
,
C. D.
, 1992, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade: Experimental Technique and Results
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
734
740
.
22.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using Ammonia and Diazo Technique
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
613
621
.
23.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Hoslyn
,
H. D.
, 1980, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
81
87
.
24.
Takeishi
,
M.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
, 1992, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
828
834
.
25.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
63
70
.
26.
Blair
,
M. F.
, 1994, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
1
13
.
27.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2004, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Turbine Blade
,” IMECE Paper No. 2004-59852.
28.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, 2009, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
0889-504X
131
, p.
011014
.
29.
Suryanarayanan
,
A.
,
Ozturk
,
B.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, 2007, “
Film Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
,” ASME Paper No. GT2007-27122.
30.
Sieverding
,
C. H.
,
Arts
,
T.
,
Dénos
,
R.
, and
Martelli
,
F.
, 1996, “
Investigation of the Flow Field Downstream of a Turbine Trailing Edge Cooled Nozzle Guide Vane
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
291
300
.
31.
Sieverding
,
C. H.
, and
Arts
,
T.
, 1992, “
The VKI Compression Tube Annular Cascade Facility CT3
,” ASME Paper. 92-GT-336.
32.
Dénos
,
R.
, and
Paniagua
,
G.
, 2005, “
Rotor/Stator Interaction in Transonic HP Turbines
,”
Effects of Aerodynamic Unsteadiness in Axial Turbomachines
,
R.
Denos
and
G.
Paniagua
, eds.,
von Karman Institute Lecture Series
,
Rhode Saint Genèse, Belgium
.
33.
Popp
,
O.
,
Smith
,
D.
,
Bubb
,
J.
,
Grabowski
,
H.
, and
Diller
,
T.
, 1999, “
Steady and Unsteady Heat Transfer in a Transonic Film Cooled Turbine Cascade
,” ASME Paper No. 99-GT-259.
34.
Schlichting
,
H.
, 1968,
Boundary Layer Theory
,
6th ed.
,
Springer
,
Berlin
.
35.
Thorpe
,
J.
,
Yoshino
,
S.
,
Ainsworth
,
R.
, and
Harvey
,
N.
, 2004, “
Improved Fast Response Instrumentation for Short-Duration Wind Tunnels
,”
Meas. Sci. Technol.
0957-0233,
15
, pp.
1897
1909
.
36.
Solano
,
J. P.
,
Paniagua
,
G.
, and
de la Loma
,
A.
, 2008, “
Novel 2D Transient Heat Conduction Calculation in a Cooled Rotor: Ventilation Preheating—Blowdown Flux
,” ASME Paper No. GT2008-51308.
37.
Dénos
,
R.
,
Paniagua
,
G.
,
Yasa
,
T.
, and
Fortugno
,
E.
, 2006, “
Determination of the Efficiency of a Cooled HP Turbine in a Blowdown Facility
,” ASME Paper No. GT2006-90460.
38.
Ames Research Staff
, 1953, “
Equations, Tables and Charts for Compressible Flow
,” NACA Report No. 1135.
39.
Cambier
,
L
, and
Gazaix
,
M.
, 2002, “
elsA: An Efficient Object-Oriented Solution to CFD Computations
,” AIAA Paper No. 2002-0108
40.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
, 1982, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
0021-9991,
48
, pp.
387
411
.
41.
Paniagua
,
G.
, and
Yasa
,
T.
, 2007, “
Accurate Turbine Inertia Measurement
,”
J. Experimental Mechanics
,
47
, pp.
693
700
.
42.
Yasa
,
T.
,
Paniagua
,
G.
, and
Bussolin
,
A.
, 2007, “
Performance Analysis of a Transonic High Pressure Turbine
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
221
, pp.
769
778
.
43.
Kacker
,
S. C.
, and
Okapuu
,
U.
, 1982, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Eng. Power
0022-0825,
104
, pp.
111
119
.
44.
Woinowsky-Krieger
,
M.
,
Lavoie
,
J. P.
,
Vlasic
,
E. P.
, and
Moustapha
,
S. H.
, 1999, “
Off-Design Performance of a Single-Stage Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
177
183
.
45.
Dunham
,
J.
, and
Came
,
P. M.
, 1970, “
Improvements to the Ainley-Mathieson Method of Turbine Performance Prediction
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
252
256
.
You do not currently have access to this content.