This paper presents a quantitative comparison of the effect of using thermodynamic models of various degrees of complexity if applied to fluid-dynamic simulations of turboexpanders operated at conditions affected by strong real-gas effects. The 2D flow field of a standard transonic turbine stator is simulated using the state-of-the-art inviscid ZFLOW computational fluid-dynamic solver coupled with a fluid property library containing the thermodynamic models. The considered thermodynamic models are, in order of increasing complexity, the polytropic ideal-gas (PIG) law, the Peng–Robinson–Stryjek–Vera (PRSV) cubic equation of state, and the highly accurate multiparameter equations of state (MPEoSs), which are adopted as benchmark reference. The fluids are steam, toluene, and R245fa. The two processes under scrutiny are a moderately nonideal subcritical expansion and a highly nonideal supercritical expansion characterized by the same pressure ratio. Using the PIG model for moderately nonideal subcritical expansions leads to large deviations with magnitudes of up to 18–25% in density, sound speed, velocity, and total pressure loss, and up to 4–10% in Mach number, pressure, temperature, and mass flow rate. The PIG model applied to highly nonideal supercritical expansions leads to a doubling of the deviations’ magnitudes. The advantage of the PIG model is that its computational cost is roughly 1/11 (or 1/3 if saturation-checks in the MPEoS are omitted) of the cost of the MPEoSs. For the subcritical expansion, adopting the physically more correct cubic PRSV model leads to comparatively smaller deviations, namely, <2% (toluene and R245fa) and <4% (steam) in all flow parameters, except for the total pressure loss error, which is comparable to that of the PIG model. The PRSV model is reasonably accurate even for the highly nonideal supercritical expansion, for which the errors are at most 4%. The computational cost of the PRSV model is roughly nine times higher than the cost of the PIG model (or twice as high if saturation-checks in the PRSV are omitted). Contrary to low-complexity fluids like water, for complex fluids like toluene and R245fa the deviations in density, speed of sound, and velocity ensuing from the use of the PIG model vary strongly along the isentropic expansions. This invalidates the approach commonly used in practice of correcting the PIG model with a properly chosen constant compressibility factor.

1.
Curran
,
H.
, 1981, “
Use of Organic Working Fluids in Rankine Engines
,”
J. Energy
0146-1412,
5
(
4
), pp.
218
223
.
2.
Angelino
,
G.
,
Gaia
,
M.
, and
Macchi
,
E.
, 1984, “
A Review of Italian Activity in the Field of Organic Rankine Cycles
,”
VDI Berichte—Proceedings of the International VDI Seminar
,
VDI
,
Zurich
, Vol.
539
, pp.
465
482
.
3.
Obernberger
,
I.
,
Thonhofer
,
P.
, and
Reisenhofer
,
E.
, 2002, “
Description and Evaluation of the New 1000 kW ORC Process Integrated in the Biomass CHP Plant in Lienz, Austria
,”
Euroheat and Power
,
31
(
10
), pp.
18
25
0949-166X.
4.
Brasz
,
J. J.
, and
Biederman
,
B. P.
, 2003, “
Low Temperature Waste Heat Power Recovery Using Refrigeration Equipment
,”
21st International Congress of Refrigeration 2003
, Washington, DC, Paper No. ICR0587.
5.
Bloch
,
H.
, and
Soares
,
C.
, 2001,
Turboexpanders and Process Applications
,
Gulf Professional
,
Houston, TX
.
6.
Hoffren
,
J.
,
Talonpoika
,
T.
,
Larjola
,
J.
, and
Siikonen
,
T.
, 2002, “
Numerical Simulation of Real-Gas Flow in a Supersonic Turbine Nozzle Ring
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
2
), pp.
395
403
.
7.
Van Buijtenen
,
J. P.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
,
Honkatukia
,
J.
,
Esa
,
H.
,
Backman
,
J.
, and
Reunanen
,
A.
, 2003, “
Design and Validation of a New High Expansion Ratio Radial Turbine for ORC Applications
,”
Proceedings of the Fifth European Conference on Turbomachinery
, pp.
1
14
.
8.
Goodwin
,
R.
, 1989, “
Toluene Thermophysical Properties From 178 to 800 K at Pressures to 1000 bar
,”
J. Phys. Chem. Ref. Data
0047-2689,
18
(
4
), pp.
1565
1636
.
9.
Harinck
,
J.
,
Turunen-Saaresti
,
T.
, and
Colonna
,
P.
, 2007, “
Predictions of Performance and Flow Fields of a High-Expansion-Ratio Radial ORC Turbine
,” Department of Process and Energy, Delft University of Technology, Technical Report No. ET-2262.
10.
Lemmon
,
E.
, and
Span
,
R.
, 2006, “
Short Fundamental Equations of State for 20 Industrial Fluids
,”
J. Chem. Eng. Data
0021-9568,
51
(
3
), pp.
785
850
.
11.
Bober
,
W.
, and
Chow
,
W. L.
, 1990, “
Nonideal Isentropic Gas Flow Through Converging-Diverging Nozzles
,”
ASME J. Fluids Eng.
0098-2202,
112
, pp.
455
460
.
12.
Anders
,
J. B.
,
Anderson
,
W. K.
, and
Murthy
,
A. V.
, 1999, “
Transonic Similarity Theory Applied to a Supercritical Airfoil in Heavy Gases
,”
J. Aircr.
0021-8669,
36
(
6
), pp.
957
964
.
13.
Drikakis
,
D.
, and
Tsangaris
,
S.
, 1993, “
Real Gas Effects for Compressible Nozzle Flows
,”
ASME J. Fluids Eng.
0098-2202,
115
, pp.
115
120
.
14.
Wagner
,
B.
, and
Schmidt
,
W.
, 1978, “
Theoretical Investigation of Real Gas Effects in Cryogenic Wind Tunnels
,”
AIAA J.
0001-1452,
16
(
6
), pp.
580
586
.
15.
Anderson
,
W. K.
, 1991, “
Numerical Study of the Aerodynamic Effects of Using Sulfur Hexafluoride as a Test Gas in Wind Tunnels
,” NASA Technical Paper No. 3086.
16.
Colonna
,
P.
, and
Rebay
,
S.
, 2004, “
Numerical Simulation of Dense Gas Flows on Unstructured Grids With an Implicit High Resolution Upwind Euler Solver
,”
Int. J. Numer. Methods Fluids
0271-2091,
46
, pp.
735
765
.
17.
Cinnella
,
P.
, and
Congedo
,
P.
, 2004, “
A Numerical Solver for Dense Gas Flows
,”
Fourth AIAA Fluid Dynamics Conference and Exhibit
, AIAA Paper No. 2004-2137, pp.
1
12
.
18.
Cinnella
,
P.
, and
Congedo
,
P.
, 2007, “
Inviscid and Viscous Aerodynamics of Dense Gases
,”
J. Fluid Mech.
0022-1120,
580
, pp.
179
217
.
19.
Cravero
,
C.
, and
Satta
,
A.
, 2000, “
A CFD Model for Real Gas Flows
,” ASME Paper No. 2000-GT-518.
20.
Boncinelli
,
P.
,
Rubechini
,
F.
,
Arnone
,
A.
,
Cecconi
,
M.
, and
Cortese
,
C.
, 2004, “
Real Gas Effects in Turbomachinery Flows—A Computational Fluid Dynamics Model for Fast Computations
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
268
276
.
21.
Cirri
,
M.
,
Adami
,
P.
, and
Martelli
,
F.
, 2005, “
Development of a CFD Real Gas Flow Solver for Hybrid Grid
,”
Int. J. Numer. Methods Fluids
0271-2091,
47
(
8–9
), pp.
931
938
.
22.
Patek
,
J.
, 1996, “
Functional Forms to Describe Thermodynamic Properties of Gases for Fast Calculations
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
118
, pp.
210
213
.
23.
Turunen-Saaresti
,
T.
,
Tang
,
J.
, and
Larjola
,
J.
, 2006, “
A Practical Real Gas Model in CFD
,”
European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006)
,
P.
Wesseling
,
E.
Onate
, and
J.
Périau
, eds.
24.
Van der Waals
,
J.
, 1873, “
On the Continuity of the Gas and Liquid State
,” Ph.D. thesis, University of Leiden, Leiden, The Netherlands.
25.
Aldo
,
A. C.
, and
Argrow
,
B. M.
, 1995, “
Dense Gas Flows in Minimum Length Nozzles
,”
ASME J. Fluids Eng.
0098-2202,
117
, pp.
270
276
.
26.
Peng
,
D. Y.
, and
Robinson
,
D. B.
, 1976, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
0196-4313,
15
, pp.
59
64
.
27.
Stryjek
,
R.
, and
Vera
,
J. H.
, 1986, “
PRSV: An Improved Peng-Robinson Equation of State for Pure Compounds and Mixtures
,”
Can. J. Chem. Eng.
0008-4034,
64
, pp.
323
333
.
28.
Kim
,
H.
,
Lee
,
J.
,
Park
,
K.
,
Setoguchi
,
T.
, and
Matsuo
,
S.
, 2007, “
A Study of the Critical Nozzle for Flow Rate Measurement of High-Pressure Hydrogen Gas
,”
J. Therm. Sci.
1003-2169,
16
(
1
), pp.
28
32
.
29.
Span
,
R.
, 2000,
Multiparameter Equations of State—An Accurate Source of Thermodynamic Property Data
,
Springer-Verlag
,
Berlin
.
30.
Span
,
R.
,
Wagner
,
W.
,
Lemmon
,
E. W.
, and
Jacbosen
,
R. T.
, 2001, “
Multiparameter Equations of State—Recent Trends and Future Challenges
,”
Fluid Phase Equilib.
0378-3812,
183–184
, pp.
1
20
.
31.
Wagner
,
W.
, and
Pruß
,
A.
, 2002, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
0047-2689,
31
(
2
), pp.
387
535
.
32.
Colonna
,
P.
, and
Silva
,
P.
, 2003, “
Dense Gas Thermodynamic Properties of Single and Multicomponent Fluids for Fluid Dynamics Simulations
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
414
427
.
33.
Colonna
,
P.
,
Guardone
,
A.
,
Harinck
,
J.
, and
Rebay
,
S.
, 2006, “
Numerical Investigation of Dense Gas Effects in Turbine Cascades
,”
15th U.S. National Congress on Theoretical and Applied Mechanics Conference
, Boulder, CO.
34.
Colonna
,
P.
,
Rebay
,
S.
,
Harinck
,
J.
, and
Guardone
,
A.
, 2006, “
Real-Gas Effects in ORC Turbine Flow Simulations: Influence of Thermodynamic Models on Flow Fields and Performance Parameters
,”
ECCOMAS CFD 2006 Conference
, Egmond Aan Zee, North Holland.
35.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
, 2008, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
J. Propul. Power
0748-4658,
24
(
2
), pp.
282
294
.
36.
Colonna
,
P.
, and
Van der Stelt
,
T.
, 2005, “
FLUIDPROP: A Program for the Estimation of Thermophysical Properties of Fluids
,” Energy Technology Section, Delft University of Technology, The Netherlands, www.fluidprop.comwww.fluidprop.com
37.
Selmin
,
V.
, 1993, “
The Node-Centered Finite Volume Approach: Bridge Between Finite Differences and Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
102
(
1
), pp.
107
138
.
38.
Roe
,
P. L.
, 1981, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
0021-9991,
43
(
2
), pp.
357
372
.
39.
Vinokur
,
M.
, and
Montagné
,
J. L.
, 1990, “
Generalized Flux-Vector Splitting and Roe Average for an Equilibrium Real Gas
,”
J. Comput. Phys.
0021-9991,
89
(
2
), pp.
276
300
.
40.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Huber
,
M. L.
, 2002, REFPROP, Reference Fluid Properties Software, NIST.
41.
Reynolds
,
W. C.
, 1979,
Thermodynamic Properties in S.I.
,
Stanford University
,
Stanford, CA
.
42.
Martin
,
J. J.
, and
Hou
,
Y. C.
, 1955, “
Development of an Equation of State for Gases
,”
AIChE J.
0001-1541,
1
(
2
), pp.
142
151
.
43.
Span
,
R.
, and
Wagner
,
W.
, 2003, “
Equations of State for Technical Applications. II. Results for Nonpolar Fluids
,”
Int. J. Thermophys.
0195-928X,
24
(
1
), pp.
41
109
.
44.
Span
,
R.
, and
Wagner
,
W.
, 2003, “
Equations of State for Technical Applications. I. Simultaneously Optimized Functional Forms for Nonpolar and Polar Fluids
,”
Int. J. Thermophys.
0195-928X,
24
(
1
), pp.
1
39
.
45.
Starling
,
K. E.
, 1973,
Equation of State and Computer Prediction—Fluid Thermodynamic Properties for Light Petroleum Substances
,
Gulf
,
Huston, TX
.
46.
Wong
,
D. S. H.
, and
Sandler
,
S. I.
, 1992, “
A Theoretically Correct Mixing Rule for Cubic Equations of State
,”
AIChE J.
0001-1541,
38
, pp.
671
680
.
47.
Wong
,
D. S. H.
,
Sandler
,
S. I.
, and
Orbey
,
H.
, 1992, “
Equation of State Mixing Rule for Nonideal Mixtures Using Available Activity Coefficient Model Parameters and That Allows Extrapolation Over Large Ranges of Temperature and Pressure
,”
Ind. Eng. Chem. Res.
0888-5885,
31
, pp.
2033
2039
.
48.
Angelino
,
G.
, and
Colonna
,
P.
, 1998, “
Multicomponent Working Fluids for Organic Rankine Cycles (ORCs)
,”
Energy
0360-5442,
23
(
6
), pp.
449
463
.
49.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O’Connell
,
J. P.
, 2001,
The Properties of Gases and Liquids
(
Chemical Engineering Series
),
5th ed.
,
McGraw-Hill
,
New York
.
50.
Arts
,
T.
,
Lambert de Rouvroit
,
M.
, and
Rutherford
,
A. W.
, 1990, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,” Von Karman Institute for Fluid Dynamics, Technical Note 174.
51.
Lemmon
,
E. W.
,
Jacobsen
,
R. T.
,
Penoncello
,
S. G.
, and
Friend
,
D.
, 2000, “
Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa
,”
J. Phys. Chem. Ref. Data
0047-2689,
29
(
3
), pp.
331
385
.
52.
Guardone
,
A.
, and
Rebay
,
S.
, 2006, “
Unstructured Periodic Grid Generation
,”
Proceedings of the ECCOMAS CFD 2006 Conference
.
53.
Rebay
,
S.
, 1993, “
Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer–Watson Algorithm
,”
J. Comput. Phys.
0021-9991,
106
(
1
), pp.
125
138
.
54.
Northall
,
J. D.
, 2006, “
The Influence of Variable Gas Properties on Turbomachinery Computational Fluid Dynamics
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
632
638
.
55.
Rubechini
,
F.
,
Marconcini
,
M.
,
Arnone
,
A.
,
Maritano
,
M.
, and
Cecchi
,
S.
, 2006, “
The Impact of Gas Modeling in the Numerical Analysis of a Multistage Gasturbine
,” ASME Paper No. GT 2006-90129.
56.
Abbott
,
M. M.
, 1973, “
Cubic Equations of State
,”
AIChE J.
0001-1541,
19
, pp.
596
601
.
57.
Colonna
,
P.
, and
Guardone
,
A.
, 2006, “
Molecular Interpretation of Nonclassical Gasdynamics of Dense Vapors Under the van der Waals Model
,”
Phys. Fluids
1070-6631,
18
(
5
), p.
056101
.
58.
Monaco
,
J. F.
,
Cramer
,
M. S.
, and
Watson
,
L. T.
, 1997, “
Supersonic Flows of Dense Gases in Cascade Configurations
,”
J. Fluid Mech.
0022-1120,
330
, pp.
31
59
.
59.
Brown
,
B. P.
, and
Argrow
,
B. M.
, 2000, “
Application of Bethe-Zel’dovich-Thompson Fluids in Organic Rankine Cycle Engines
,”
J. Propul. Power
0748-4658,
16
(
6
), pp.
1118
1123
.
60.
Colonna
,
P.
,
Nannan
,
N.
,
Guardone
,
A.
, and
Stelt van der
,
T. P.
, 2009, “
On the Computation of the Fundamental Derivative of Gas Dynamics Gamma, Using Equations of State
,”
Fluid Phase Equilib.
0378-3812, in press.
61.
Augnier
,
R.
, 2006,
Turbine Aerodynamics: Axial-Flow and Radial-Inflow Turbine Design and Analysis
,
ASME
,
New York
.
You do not currently have access to this content.