The effect of wake structures on the evolution of the boundary layer over the suction side of a high-lift low-pressure turbine blade is studied using large-eddy simulation (LES) for a Reynolds number Re=7.8×104 (based on the axial chord and the inlet velocity). The wake data of different characteristics (defined by the wake deficit and the small-scale motion) are extracted from a precursor LES of flow past a cylinder. This replaces a moving bar that generates wakes in front of a cascade. LES results illustrate that apart from the wake kinematics, the large pressure oscillations and rollup of the separated shear layer along the rear half of the suction surface depend on the length scale of the convective wake. The transition of this rolled-up shear layer is influenced by the wake turbulence and the small-scale motion.

1.
Hunt
,
J. C. R.
, and
Durbin
,
P. A.
, 1999, “
Perturbed Vortical Layers and Shear Sheltering
,”
Fluid Dyn. Res.
0169-5983,
24
, pp.
375
404
.
2.
Meyer
,
R. X.
, 1958, “
The Effects of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines
,”
ASME J. Basic Eng.
0021-9223,
80
, pp.
1544
1552
.
3.
Mayle
,
R. E.
, 1991, “
The Role of Laminar Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
4.
Walker
,
G. J.
, 1993, “
The Role of Laminar Turbulent Transition in Gas Turbine Engines: A Discussion
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
207
217
.
5.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. -W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines—Part 1: Composite Picture
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
114
127
.
6.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. -W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines—Part 2: Compressors
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
426
444
.
7.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. -W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines—Part 3: LP Turbines
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
225
237
.
8.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
and
Shin
,
H. -W
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines—Part 4: Computations and Analyses
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
128
139
.
9.
Wu
,
X.
,
Jacobs
,
R. G.
,
Hunt
,
J. R. C.
, and
Durbin
,
P. A.
, 1999, “
Simulation of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
0022-1120,
398
, pp.
109
153
.
10.
Wu
,
X.
, and
Durbin
,
P. A.
, 2001, “
Evidence of Longitudinal Vortices Evolved From Distorted Wakes in Turbine Passage
,”
J. Fluid Mech.
,
446
, pp.
199
228
. 0022-1120
11.
Stieger
,
R.
,
Hollis
,
D.
, and
Hodson
,
H.
, 2003, “
Unsteady Surface Pressures Due to Wake Induced Transition in Laminar Separation Bubble on a LP Turbine Cascade
,” ASME Paper No. GT2003-38303.
12.
Sarkar
,
S.
, and
Voke
,
P. R.
, 2006, “
Large-Eddy Simulation of Unsteady Surface Pressure Over a LP Turbine Due to Interactions of Passing Wakes and Inflexional Boundary Layer
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
221
231
.
13.
Sarkar
,
S.
, 2007, “
The Effects of Passing Wakes on a Separating Boundary Layer Along a Low-Pressure Turbine Blade Through Large-Eddy Simulation
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,”
221
, pp.
551
564
.
14.
Wissink
,
J. G.
,
Rodi
,
W.
, and
Hodson
,
H.
, 2006, “
Influence of Disturbances Carried by Periodically Incoming Wakes on the Separating Flow Around a Turbine Blade
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
721
729
.
15.
Stadtmüller
,
P.
, 2001, “
Investigation of Wake-Induced Transition on the LP Turbine Cascade T106 A-EIZ
,” DFG-Verbundproject Fo 136/11, Version 1.0, University of the Armed Forces Munich, Germany.
16.
Yang
,
Z.
, and
Voke
,
P. R.
, 2000, “
Large-Eddy Simulation of Separated Leading-Edge Flow in General Coordinate
,”
Int. J. Numer. Methods Eng.
0029-5981,
49
, pp.
681
696
.
17.
Yang
,
Z. Y.
, and
Voke
,
P. R.
, 2001, “
Large-Eddy Simulation of Boundary Layer Separation and Transition at a Change of Surface Curvature
,”
J. Fluid Mech.
0022-1120,
439
, pp.
305
333
.
18.
Wissink
,
J. G.
, 2003, “
DNS of Separating, Low Reynolds Number Flow in a Turbine Cascade With Incoming Wakes
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
626
635
.
19.
Norberg
,
C.
, 2003, “
Fluctuating Lift on a Circular Cylinder: Review and New Measurements
,”
J. Fluids Struct.
,
17
, pp.
57
96
. 0889-9746
20.
Williamson
,
C. H. K.
, and
Roshko
,
A.
, 1990, “
Measurements of Base Pressure in the Wake of a Cylinder at Low Reynolds Number
,”
Z. Flugwiss. Weltraumforsch.
,
14
, pp.
38
46
. 0342-068X
21.
Mittal
,
R.
, and
Balachandar
,
S.
, 1995, “
Effect of Three-Dimensionality on the Lift and Drag of Nominally Two-Dimensional Cylinders
,”
Phys. Fluids
1070-6631,
7
(
8
), pp.
1841
1865
.
22.
Ghosal
,
S.
, and
Rogers
,
M. M.
, 1997, “
A Numerical Study of Self-Similarity in a Turbulent Plane Wake Using Large-Eddy Simulation
,”
Phys. Fluids
1070-6631,
9
, pp.
1729
1739
.
23.
Stieger
,
R. D.
, and
Hodson
,
H. P.
, 2005, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
388
394
.
24.
Schulte
,
V.
, and
Hodson
,
H. P.
, 1998, “
Unsteady Wake-Induced Boundary Layer Transition in High Lift LP Turbine
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
28
35
.
25.
Alam
,
M.
, and
Sandham
,
N. D.
, 2000, “
Direct Numerical Simulation of Short Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
0022-1120,
410
, pp.
1
28
.
You do not currently have access to this content.