Two extended models for the calculation of rough wall transitional boundary layers with heat transfer are presented. Both models comprise a new transition onset correlation, which accounts for the effects of roughness height and density, turbulence intensity, and wall curvature. In the transition region, an intermittency equation suitable for rough wall boundary layers is used to blend between the laminar and fully turbulent states. Finally, two different submodels for the fully turbulent boundary layer complete the two models. In the first model, termed KS-TLK-T in this paper, a sand roughness approach from Durbin et al. (2001, “Rough Wall Modification of Two Layer k-ε ,” ASME J. Fluids Eng., 123, pp. 16–21), which builds upon a two-layer k-ε-turbulence model, is used for this purpose. The second model, the so-called DEM-TLV-T model, makes use of the discrete-element roughness approach, which was recently combined with a two-layer k-ε-turbulence model by the present authors. The discrete-element model will be formulated in a new way, suitable for randomly rough topographies. Part I of the paper will provide detailed model formulations as well as a description of the database used for developing the new transition onset correlation. Part II contains a comprehensive validation of the two models, using a variety of test cases with transitional and fully turbulent boundary layers. The validation focuses on heat transfer calculations on both the suction and the pressure side of modern turbine airfoils. Test cases include extensive experimental investigations on a high-pressure turbine vane with varying surface roughness and turbulence intensity, recently published by the current authors as well as new experimental data from a low-pressure turbine vane. In the majority of cases, the predictions from both models are in good agreement with the experimental data.

1.
Sieger
,
K.
,
Schiele
,
R.
,
Kaufmann
,
F.
,
Wittig
,
S.
, and
Rodi
,
W.
, 1995, “
A Two-Layer Turbulence Model for the Calculation of Transitional Boundary-Layers
,”
ERCOFTAC Bulletin
,
24
, pp.
21
25
.
2.
Schiele
,
R.
,
Kaufmann
,
F.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1999, “
Calculating Turbulent and Transitional Boundary-Layers With Two-Layer Models of Turbulence
,”
Engineering Turbulence Modelling and Experiments
,
4
, pp.
543
554
.
3.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
, 2006, “
A Correlation-Based Transition Model Using Local Variables: Part I—Model Formulation
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
413
422
.
4.
Turner
,
A. B.
,
Tarada
,
F. H. A.
, and
Bayley
,
F. J.
, 1985, “
Effects of Surface Roughness on Heat Transfer to Gas Turbine Blades
,” AGARD Paper No. CP-390.
5.
Hoffs
,
A.
,
Drost
,
U.
, and
Bõlcs
,
A.
, 1996, “
Heat Transfer Measurements on a Turbine Airfoil at Various Reynolds Numbers and Turbulence Intensities Including Effects of Surface Roughness
,” ASME Paper No. 96-GT-169.
6.
Abuaf
,
N.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 1997, “
Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
522
529
.
7.
Bunker
,
R. S.
, 1997, “
Separate and Combined Effects of Surface Roughness and Turbulence Intensity on Vane Heat Transfer
,” ASME Paper No. 97-GT-135.
8.
Boyle
,
R. J.
,
Spuckler
,
C. M.
,
Lucci
,
B. L.
, and
Camperchioli
,
W. P.
, 2001, “
Infrared Low Temperature Turbine Vane Rough Surface Heat Transfer Measurements
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
168
177
.
9.
Boyle
,
R. J.
and
Senyitko
,
R. G.
, 2003, “
Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics
,” ASME Paper No. GT2003-38580.
10.
Boyle
,
R. J.
and
Senyitko
,
R. G.
, 2005, “
Effects of Surface Roughness on Turbine Vane Heat Transfer
,” ASME Paper No. GT2005-68133.
11.
Blair
,
M.
, 1994, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
1
13
.
12.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2005, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
200
208
.
13.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
, 2007, “
Roughness and Secondary Flow Effects on Turbine Vane External Heat Transfer
,”
J. Propul. Power
0748-4658,
23
(
2
), pp.
283
291
.
14.
Stripf
,
M.
, 2007, “
Einfluss der Oberflächenrauigkeit auf die transitionale Grenzschicht an Gasturbinenschaufeln
,” doctoral, thesis, Institut für Thermische Strömungsmaschinen, Universität Karlsruhe, Germany.
15.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
, 2008, “
Modeling of Rough Wall Boundary Layer Transition and Heat Transfer on Turbine Airfoils
,”
ASME J. Turbomach.
0889-504X,
130
, p.
021003
.
16.
Cebeci
,
T.
, and
Smith
,
A. M. O.
, 1974,
Analysis of Turbulent Boundary Layers
,
Academic
,
New York
.
17.
Taylor
,
R. P.
,
Coleman
,
H. W.
, and
Hodge
,
B. K.
, 1984, “
A Discrete Element Prediction Approach for Turbulent Flow Over Rough Surfaces
,
Mississippi State University
, Report No. TFD-84-1.
18.
Durbin
,
P. A.
,
Medic
,
G.
,
Seo
,
J.
,
Eaton
,
J. K.
, and
Song
,
J.
, 2001, “
Rough Wall Modification of Two-Layer k-ε
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
16
21
.
19.
Chen
,
H. C.
, and
Patel
,
V. C.
, 1988, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
0001-1452,
26
, pp.
641
648
.
20.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1974, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
3
, pp.
269
289
.
21.
Wolfshtein
,
M.
, 1969, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
301
318
.
22.
Schlichting
,
H.
, 1936, “
Experimentelle Untersuchungen zum Rauigkeitsproblem
,”
Ing.-Arch.
0020-1154,
7
, pp.
1
34
.
23.
McClain
,
S. T.
, 2002, “
A Discrete-Element Model for Turbulent Flow Over Randomly-Rough Surfaces
,” Ph.D. thesis, Mississippi State University, Starkville.
24.
Tarada
,
F.
, 1990, “
Prediction of Rough-Wall Boundary Layers Using a Low Reynolds Number Boundary Layers Using a Low Reynolds Number k-ε Model
,”
Int. J. Heat Fluid Flow
0142-727X,
11
, pp.
331
345
.
25.
Hosni
,
M. H.
, 1989, “
Measurement and Calculation of Surface Roughness Effects on Turbulent Flow and Heat Transfer
,” Ph.D. thesis, Mississippi State University, Starkville.
26.
Rodi
,
W.
,
Mansour
,
N. N.
, and
Michelassi
,
V.
, 1993, “
One-Equation Near-Wall Turbulence Modeling With the Aid of Direct Simulation Data
,”
ASME J. Fluids Eng.
0098-2202,
115
, pp.
196
205
.
27.
Finson
,
M. L.
, and
Wu
,
P. K. S.
, 1979, “
Analysis of Rough Wall Turbulent Heating With Application to Blunted Flight Vehicles
,” AIAA Paper No. 79-0008.
28.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1970,
Heat and Mass Transfer in Boundary Layers
,
2nd ed.
,
International Textbook
,
London
.
29.
McClain
,
S. T.
, and
Brown
,
J. M.
, 2007, “
Reduced Rough-Surface Parameterization for Use With the Discrete-Element Model
,” ASME Paper No. GT2007-27588.
30.
McClain
,
S. T.
,
Collins
,
S. P.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
, 2006, “
The Importance of the Mean Elevation in Predicting Skin Friction for Flow Over Closely Packed Surface Roughness
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
579
586
.
31.
Emmons
,
H.
, 1951, “
The Laminar-Turbulent Transition in a Boundary Layer: Part I
,”
J. Aeronaut. Sci.
,
18
, pp.
490
498
. 0095-9812
32.
Narasimha
,
R.
, 1957, “
On the Distribution of Intermittency in the Transitional Region of a Boundary Layer
,”
J. Aeronaut. Sci.
,
24
, pp.
711
712
. 0095-9812
33.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Gostelow
,
J. P.
, 1996, “
Transition Length Prediction for Flows With Rapidly Changing Pressure Gradients
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
744
751
.
34.
Gostelow
,
J.
,
Blunden
,
A.
, and
Walker
,
G.
, 1994, “
Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
392
404
.
35.
Fraser
,
C. J.
,
Higazy
,
M. G.
, and
Milne
,
J. S.
, 1994, “
End-Stage Boundary Layer Transition Models for Engineering Calculations
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
208
, pp.
47
58
.
36.
Gostelow
,
J. P.
,
Melwani
,
N.
, and
Walker
,
G. J.
, 1996, “
Effects of Streamwise Pressure Gradient on Turbulent Spot Development
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
737
743
.
37.
D’Ovidio
,
A.
,
Harkins
,
J. A.
, and
Gostelow
,
J. P.
, 2001, “
Turbulent Spots in Strong Adverse Pressure Gradients—Part II: Spot Propagation and Spreading Rates
,” ASME Paper No. 2001-GT-0406.
38.
Anthony
,
R.
,
Jones
,
T.
, and
LaGraff
,
J.
, 2005, “
High Frequency Surface Heat Flux Imaging of Bypass Transition
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
241
250
.
39.
Schiele
,
R.
, 1999, “
Die transitionale Grenzschicht an Gasturbinenschaufeln
,” doctoral thesis, Institut für Thermische Strömungsmaschinen, Universität Karlsruhe, Germany.
40.
Dris
,
A.
, and
Johnson
,
M. W.
, 2005, “
Transition on Concave Surfaces
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
507
511
.
41.
Schulz
,
A.
, 1986, “
Zum Einfluß hoher Freistromturbulenz, intensiver Kühlung und einer Nachlaufströmung auf den äußeren Wärmeübergang einer konvektiv gekühlten Gasturbinenschaufel
,” doctoral thesis, Institut für Thermische Strömungsmaschinen, Universität Karlsruhe, Karlsruhe.
42.
Arts
,
T.
, and
De Rouvroit
,
M. L.
, 1990, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,”
Von Kármán Institute for Fluid Dynamics
, Technical Report No. 174.
43.
Arts
,
T.
, and
De Rouvroit
,
M. L.
, 1992, “
Aero-Thermal Performance of a Two-Dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
147
154
.
44.
Daniels
,
L.
, 1978, “
Film-Cooling of Gas Turbine Blades
,” Ph.D. thesis, Department of Engineering Science, University of Oxford, Oxford.
45.
Blair
,
M. F.
, and
Werle
,
M. J.
, 1980, “
The Influence of Freestream Turbulence on the Zero Pressure Gradient Fully Turbulent Boundary Layer
,”
United Technologies Research Center
, Report No. R80-914388-12.
46.
Blair
,
M. F.
, and
Werle
,
M. J.
, 1980, “
Combined Influence of Freestream Turbulence and Favourable Pressure Gradients on Boundary Layer Transition and Heat Transfer
,”
United Technologies Research Center
, Report No. R81-914388-17.
47.
Coupland
,
J.
, 1993, “
ERCOFTAC Special Interest Group Test Cases
,” personal communication.
48.
Rüd
,
K.
, and
Wittig
,
S.
, 1986, “
Laminar and Transitional Boundary Layer Structures in Accelerating Flow With Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
108
, pp.
116
123
.
49.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
50.
Crane
,
R. I.
, and
Umur
,
H.
, 1990, “
Concave-Wall Laminar Heat Transfer and Görtler Vortex Structure: Effects of Pre-Curvature Boundary Layer and Favourable Pressure Gradients
,” ASME Paper No. 90-GT-94.
51.
Finnis
,
M. V.
, and
Brown
,
A.
, 1996, “
The Streamwise Development of Görtler Vortices in a Favorable Pressure Gradient
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
162
171
.
52.
Floryan
,
J. M.
, 1991, “
On the Görtler Instability of Boundary Layers
,”
Prog. Aerosp. Sci.
0376-0421,
28
, pp.
235
271
.
53.
Pinson
,
M. W.
, and
Wang
,
T.
, 2000, “
Effect of Two-Scale Roughness on Heat Transfer in Transitional Boundary Layers, Part I: Surface Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
301
307
.
54.
Pinson
,
M. W.
, and
Wang
,
T.
, 2000, “
Effect of Two-Scale Roughness on Heat Transfer in Transitional Boundary Layers, Part II: Analysis of Boundary Layer
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
308
316
.
55.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Wittig
,
S.
, 2009, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer—Part II: Model Validation and Benchmarking
,”
ASME J. Turbomach.
0889-504X,
131
, p.
031017
.
You do not currently have access to this content.