Automatic optimization techniques have been used in recent years for the aerodynamic and mechanical design of turbomachine components. Despite the many advantages, their use is usually limited to simple applications in industrial practice, because of their high computational cost. In this paper, an optimization strategy is presented, which enables the three-dimensional multipoint, multiobjective aerodynamic optimization of turbomachinery blades in a time frame compatible with industrial standards. The design strategy is based on the coupling of three-dimensional inverse design, response surface method, multiobjective evolutionary algorithms, and computational fluid dynamics analyses. The blade parametrization is performed by means of a three-dimensional inverse design method, where aerodynamic parameters, such as the blade loading, are used to describe the blade shape. Such a parametrization allows for a direct control of the aerodynamic flow field and performance, leading to a major advantage in the optimization process. The design method was applied to the redesign of a centrifugal and of an axial compressor stage. The two examples confirmed the validity of the design strategy to perform the three-dimensional optimization of turbomachine components, accounting for both design and off-design performance, in a time-efficient manner. The coupling of response functions and inverse design parametrization also allowed for an easy sensitivity analysis of the impact of the design parameters on the performance ones, contributing to the development of design guidelines that can be exploited for similar design applications.

1.
Sonoda
,
T.
,
Yamaghuci
,
Y.
,
Arima
,
T.
,
Olhofer
,
M.
,
Sendhoff
,
B.
, and
Schreiber
,
H.
, 2003, “
Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition
,” ASME Paper No. GT2003-38458.
2.
Shahpar
,
S.
, and
Radford
,
D.
, 1999, “
Application of the FAITH Linear Design System to a Compressor Blade
,”
Proceedings of ISAABE Conference
, ISABE
99
7045
.
3.
Arnone
,
A.
,
Bonaiuti
,
D.
,
Focacci
,
A.
,
Pacciani
,
R.
,
Scotti
,
A.
, and
Spano
,
E.
, 2004, “
Parametric Optimization of a High-Lift Turbine Vane
,” ASME Paper No. GT2004-54308.
4.
Burguburu
,
S.
,
Toussaint
,
C.
,
Bonhomme
,
C.
, and
Leroy
,
G.
, 2003, “
Numerical Optimization of Turbomachinery Bladings
,” ASME Paper No. GT2003-38310.
5.
Kammerer
,
S.
,
Mayer
,
J. F.
,
Paffrath
,
M.
,
Wever
,
U.
, and
Jung
,
A. R.
, “
Three-Dimensional Optimization of Turbomachinery Bladings Using Sensitivity Analysis
,” ASME Paper No. GT2003-38037.
6.
Buche
,
D.
,
Guidati
,
G.
, and
Stoll
,
P.
, 2003, “
Automated Design Optimization of Compressor Blades for Stationary, Large-Scale Turbomachinery
,” ASME Paper No. 2003-38421.
7.
Sieverding
,
F.
,
Casey
,
M.
,
Ribi
,
B.
, and
Meyer
,
M.
, 2003, “
Design of Industrial Axial Compressor Blade Sections for Optimal Range and Performance
,” ASME Paper No. GT2003-38036.
8.
Benini
,
E.
, and
Tourlidakis
,
A.
, 2001, “
Design Optimization of Vaned Diffusers of Centrifugal Compressors Using Genetic Algorithms
,” AIAA Paper No. 2001-2583.
9.
Bonaiuti
,
D.
, and
Pediroda
,
V.
, 2001, “
Aerodynamic Optimization of an Industrial Centrifugal Compressor Impeller Using Genetic Algorithms
,”
Proceedings of Eurogen 2001
.
10.
Zangeneh
,
M.
, 1994, “
Inviscid-Viscous Interaction Method for Three-Dimensional Inverse Design of Centrifugal Impellers
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
280
290
.
11.
Watanabe
,
H.
, and
Harada
,
H.
, 1999, “
Suppression of Secondary Flows in a Turbine Nozzle With Controlled Stacking Shape and Exit Circulation by 3D Inverse Design Method
,” ASME Paper No. 99-GT-72.
12.
Lecerf
,
N.
,
Jeannel
,
D.
, and
Laude
,
A.
, 2003, “
A Robust Design Methodology for High-Pressure Compressor Through-flow Optimization
,” ASME Paper No. GT2003-38264.
13.
Bonaiuti
,
D.
,
Arnone
,
A.
,
Ermini
,
M.
, and
Baldassarre
,
L.
, 2006, “
Analysis and Optimization of Transonic Centrifugal Compressor Impellers Using the Design of Experiments Technique
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
786
797
.
14.
Kawagishi
,
H.
, and
Kudo
,
K.
, 2005, “
Development of Global Optimization Method for Design of Turbine Stages
,” ASME Paper No. GT2005-68290.
15.
Myers
,
R. H.
, 1999, “
Response Surface Methodology—Current Status and Future Direction
,”
J. Quality Technol.
0022-4065,
31
(
1
), pp.
30
44
.
16.
Taguchi
,
G.
, 1976,
Design of Experiment
,
Maruzen
,
Tokyo
.
17.
Zangeneh
,
M.
, 1991, “
A 3D Design Method for Radial and Mixed-Flow Turbomachinery Blades
,”
Int. J. Numer. Methods Fluids
0271-2091,
13
, pp.
599
624
.
18.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
, 1992, “
Navier–Stokes Solution of Transonic Cascade Flow Using Non-Periodic C-type Grids
,”
J. Propul. Power
0748-4658,
8
, pp.
410
417
.
19.
Arnone
,
A.
,
Bonaiuti
,
D.
,
Boncinelli
,
P.
,
Ermini
,
M.
,
Milani
,
A.
,
Baldassarre
,
L.
, and
Camatti
,
M.
, 2002, “
CFD Applications to Industrial Centrifugal Compressor Design
,” ASME Paper No. GT-2002-30393.
20.
Bonaiuti
,
D.
,
Arnone
,
A.
,
Hah
,
C.
, and
Hayami
,
H.
, 2002, “
Development of Secondary Flow Field in a Low Solidity Diffuser in a Transonic Centrifugal Compressor Stage
,” ASME Paper No. GT-2002-30371.
21.
Arnone
,
A.
, 1994, “
Viscous Analysis of Three-Dimensional Rotor Flows Using a Multigrid Method
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
435
445
.
22.
Arnone
,
A.
,
Carnevale
,
E.
, and
Marconcini
,
M.
, 1997, “
Grid Dependency Study for the NASA Rotor 37 Compressor Blade
,” ASME Paper No. 97-GT-384.
23.
Zangeneh
,
M.
,
Goto
,
A.
, and
Harada
,
H.
, 1998, “
On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed-Flow Impellers
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
723
735
.
24.
Cumpsty
,
N. A.
, 1989,
Compressor Aerodynamics
,
Longmans
,
Green, New York
.
25.
Ginder
,
R. B.
, and
Harris
,
D.
, 1990, “
Test-Case E/CO-3 Single Subsonic Compressor Stage
,” AGARD AR-275.
26.
Buche
,
D.
,
Guidati
,
G.
, and
Stoll
,
P.
, 2003, “
Automated Design Optimization of Compressor Blades for Stationary, Large-Scale Turbomachinery
,” ASME Paper No. GT2003-38421.
27.
Terauchi
,
K.
,
Kariya
,
D.
,
Maeda
,
S.
, and
Yoshiura
,
K.
, 2005, “
Redesign of an 11-Stage Axial Compressor for Industrial Gas Turbines
,” ASME Paper No. GT2005-68689.
You do not currently have access to this content.