The high pressure turbine stage within gas turbine engines is exposed to combustor exit flows that are nonuniform in both stagnation pressure and temperature. These highly turbulent flows typically enter the first stage vanes with significant spatial gradients near the inner and outer diameter endwalls. These gradients can result in secondary flow development within the vane passage that is different than what classical secondary flow models predict. The heat transfer between the working fluid and the turbine vane surface and endwalls is directly related to the secondary flows. The goal of the current study was to examine the migration of different inlet radial temperature and pressure profiles through the high turbine vane of a modern turbine engine. The tests were performed using an inlet profile generator located in the Turbine Research Facility at the Air Force Research Laboratory. Comparisons of area-averaged radial exit profiles are reported as well as profiles at three vane pitch locations to document the circumferential variation in the profiles. The results show that the shape of the total pressure profile near the endwalls at the inlet of the vane can alter the redistribution of stagnation enthalpy through the airfoil passage significantly. Total pressure loss and exit flow angle variations are also examined for the different inlet profiles.

1.
Munk
,
M.
, and
Prim
,
R. C.
, 1947, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
33
, pp.
137
141
.
2.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
866
874
.
3.
Hermanson
,
K.
, and
Thole
,
K. A.
, 1999, “
Effect of Inlet Profiles on Endwall Secondary Flows
,”
J. Propul. Power
0748-4658,
16
(
2
), pp.
286
296
.
4.
Colban
,
W.
,
Thole
,
K.
, and
Zess
,
G.
, 2002, “
Combustor Turbine Interface Studies—Part 2: Flow and Thermal Field Measurements
,” ASME Paper No. 2002-GT-30527.
5.
Boyle
,
R.
, and
Giel
,
P.
, 1997, “
Prediction of Nonuniform Inlet Temperature Effects on Vane and Rotor Heat Transfer
,” ASME Paper No. 97-GT-133.
6.
Dorney
,
D.
, and
Schwab
,
J.
, 1996, “
Unsteady Numerical Simulations of Radial Temperature Profile Redistribution in a Single-Stage Turbine
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
783
791
.
7.
Cattafesta
,
L.
, 1988, “
An Experimental Investigation of the Effects of Inlet Radial Temperature Profiles on the Aerodynamic Performance of a Transonic Turbine Stage
,” MS thesis, M.I.T., Cambridge.
8.
Shang
,
T.
,
Guenette
,
G.
,
Epstein
,
A.
, and
Saxer
,
A.
, 1995, “
The Influence of Inlet Temperature Distortion on Rotor Heat Transfer in a Transonic Turbine
,” AIAA Paper No. 95-3042.
9.
Chana
,
K.
,
Hurrion
,
J.
, and
Jones
,
T.
, 2003, “
The Design, Development and Testing of a Non-Uniform Inlet Temperature Generator for the QinetiQ Transient Turbine Research Facility
,” ASME Paper No. 2003-GT-38469.
10.
Povey
,
T.
,
Chana
,
K.
,
Jones
,
T.
, and
Hurrion
,
J.
, 2005, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,” ASME Paper No. GT2005-69066.
11.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
, 1989, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
0748-4658,
5
(
1
), pp.
64
71
.
12.
Saxer
,
A.
, and
Giles
,
M.
, 1990, “
Inlet Radial Temperature Redistribution in a Transonic Turbine Stage
,” AIAA Paper No. 90-1543.
13.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2009, “
An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes
,”
ASME J. Turbomach.
0889-504X,
131
(
2
), p.
021009
.
14.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
MacArthur
,
C. D.
, and
Murawski
,
C. G.
, 1992, “
The USAF Advanced Turbine Aerothermal Research Rig (ATARR)
,”
NATO AGARD Propulsion and Energetics Panel Conference Proceedings
, Vol.
527
,
Antalya, Turkey
.
15.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2007, “
Experimental Evaluation of an Inlet Profile Generator for High-Pressure Turbine Tests
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
382
393
.
16.
Dorney
,
D. J.
, and
Davis
,
R. L.
, 1992, “
Navier–Stokes Analysis of Turbine Blade Heat Transfer and Performance
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
795
806
.
17.
Rai
,
M. M.
, 1987, “
Navier–Stokes Simulations of Rotor-Stator Interaction Using Patched and Overlaid Grids
,”
J. Propul. Power
0748-4658,
3
, pp.
387
396
.
18.
Rai
,
M. M.
, and
Madavan
,
N. K.
, 1990, “
Multi-Airfoil Navier–Stokes Simulations of Turbine Rotor-Stator Interaction
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
377
384
.
19.
Praisner
,
T. J.
,
Magowan
,
J. W.
, and
Clark
,
J. P.
, 2003, “
Predictions of Temperature Redistribution in a Turning Duct and in High-Pressure Turbines
,” ASME Paper No. GT2003-38317.
20.
Clark
,
J. P.
, and
Grover
,
E. A.
, 2006, “
Assessing Convergence in Predictions of Periodic-Unsteady Flowfields
,” ASME Paper No. GT2006-90735.
21.
Johnson
,
P. D.
, 2005, “
Consortium Turbine Research Rig, Aerothermal and Mechanical Design
,” AFRL Technical Report No. AFRL-PR-WP-TR-2005-2157.
22.
Urbassik
,
R. M.
,
Wolff
,
J. M.
, and
Polanka
,
M. D.
, 2006, “
Unsteady Aerodynamics and Interactions Between a High Pressure Turbine Vane and Rotor
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
35
72
.
23.
Ames
,
F. E.
,
Johnson
,
J. D.
, and
Fiala
,
N. J.
, 2006, “
The Influence of Aero-Derivative Combustor Turbulence and Reynolds Number on Vane Aerodynamic Losses, Secondary Flows, and Wake Growth
,” ASME Paper No. GT2006-90168.
24.
Cumpsty
,
N. A.
, 1989,
Compressor Aerodynamics
,
Longmans
,
New York
, p.
316
.
You do not currently have access to this content.