Film cooling effectiveness measurements under rotation were performed on the rotor blade platform using a pressure sensitive paint (PSP) technique. The present study examines, in particular, the film cooling effectiveness due to purging of coolant from the wheel-space cavity through the circumferential clearance gap provided between the stationary and rotating components of the turbine. The experimental investigation is carried out in a new three-stage turbine facility, recently designed and taken into operation at the Turbomachinery Performance and Flow Research Laboratory (TPFL) of Texas A&M University. This new turbine rotor has been used to facilitate coolant injection through this stator-rotor gap upstream of the first stage rotor blade. The gap was inclined at 25deg to mainstream flow to allow the injected coolant to form a film along the passage platform. The effects of turbine rotating conditions on the blade platform film cooling effectiveness were investigated at three speeds of 2550rpm, 2000rpm, and 1500rpm with corresponding incidence angles of 23.2deg, 43.4deg, and 54.8deg, respectively. Four different coolant-to-mainstream mass flow ratios varying from 0.5% to 2.0% were tested at each rotational speed. Aerodynamic measurements were performed at the first stage stator exit using a radially traversed five-hole probe to quantify the mainstream flow at this station. Results indicate that film cooling effectiveness increases with an increase in the coolant-to-mainstream mass flow ratios for all turbine speeds. Higher turbine rotation speeds show more local film cooling effectiveness spread on the platform with increasing magnitudes.

1.
Schobeiri
,
M. T.
, 1999, “
Efficiency, Performance and Flow Measurement of Siemens-Westinghouse HP-Turbine Blades
,” Series 9600 and 5600, Final Report, Westinghouse.
2.
Schobeiri
,
M. T.
,
Gilarranz
,
J. L.
, and
Johansen
,
E. S.
, 2000, “
Aerodynamic and Performance Studies of a Three Stage High Pressure Research Turbine with 3-D Blades, Design Points and Off-Design Experimental Investigations
,” Paper No. 2000-GT-484.
3.
Schobeiri
,
M. T.
,
Suryanarayanan
,
A.
,
Jermann
,
C.
, and
Neuenschwander
,
T.
, 2004, “
A Comparative Aerodynamic and Performance Study of a Three-Stage High Pressure Turbine With 3-D Bowed Blades and Cylindrical Blades
,” Paper No. GT-2004-53650.
4.
Lakshminarayana
,
B.
, 1996,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York, NY
.
5.
Schobeiri
,
M.
, 2005,
Turbomachinery Flow Physics and Dynamic Performance
,
Springer-Verlag
,
New York
, ISBN 3-540-22368-1.
6.
Langston
,
L. S.
, 1980, “
Crossflows in Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
866
874
.
7.
Goldstein
,
R. J.
, and
Spores
,
R. A.
, 1988, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
862
869
.
8.
Takeishi
,
K.
,
Matsuura
,
M.
,
Aoki
,
S.
, and
Sato
,
T.
, 1990, “
An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
488
496
.
9.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
621
656
.
10.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
, 2005, “
The Interaction of Turbine Inter-platform Leakage Flow With the Mainstream Flow
,” ASME Paper No. GT2005-68151.
11.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
12.
Dring
,
R. P.
,
Blair
,
M. F.
, and
Hoslyn
,
H. D.
, 1980, “
An Experimental Investigation of Film Cooling on a Turbine Rotor Blade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
81
87
.
13.
Takeishi
,
M.
,
Aoki
,
S.
,
Sato
,
T.
, and
Tsukagoshi
,
K.
, 1992, “
Film Cooling on a Gas Turbine Rotor Blade
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
828
834
.
14.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
63
70
.
15.
Blair
,
M. F.
, 1994, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
1
13
.
16.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2004, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Turbine Blade
,” Paper No. IMECE 2004-59852.
17.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2005, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Film-Cooled Blade Using Pressure Sensitive Paint
,” ASME Paper No. GT-2005-68344.
18.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
0022-1481, pp.
524
529
.
19.
Harasgama
,
S. P.
, and
Burton
,
C. D.
, 1992, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade: Part 1—Experimental Technique and Results
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
734
740
.
20.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1996, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using Ammonia and Diazo Technique
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
613
621
.
21.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1997, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
786
793
.
22.
Chyu
,
M. K.
, 2001, “
Heat Transfer Near Turbine Nozzle Endwall
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
27
36
.
23.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
, 2001, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure Sensitive Paint
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
730
738
.
24.
Kost
,
F.
, and
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part 1—Aerodynamic Measurements
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
709
719
.
25.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part 2—Heat Transfer and Film-Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
720
728
.
26.
Mclean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
, 2001, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part I—Aerodynamic Measurements in the Stationary Frame
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
687
696
.
27.
Mclean
,
C.
,
Camci
,
C.
, and
Glezer
,
B.
, 2001, “
Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage: Part 2—Aerodynamic Measurements in the Rotational Frame
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
697
703
.
28.
Oke
,
R. A.
,
Simon
,
T. W.
,
Burd
,
S. W.
, and
Wahlberg
,
R.
, 2000, “
Measurements in a Turbine Cascade over a Contoured Endwall: Discrete Hole Injection of Bleed Flow
,” ASME Paper No. 2000-GT-214.
29.
Oke
,
R. A.
,
Simon
,
T. W.
,
Shih
,
T.
,
Zhu
,
B.
,
Ling
,
Y. L.
, and
Chyu
,
M.
, 2001, “
Measurements Over a Film-Cooled Contoured Endwall With Various Injection Rates
,” Paper No. 2001-GT-140.
30.
Oke
,
R. A.
, and
Simon
,
T. W.
, 2002, “
Film Cooling Experiments With Flow Introduced Upstream of a First Stage Nozzle Guide Vane Through Slots of Various Geometries
,” ASME Paper No. GT-2002-30169.
31.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2004, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,” ASME Paper No. GT-2004-53326.
32.
Zhang
,
L.
, and
Moon
,
H. K.
, 2003, “
Turbine Nozzle Endwall Inlet Film Cooling—The Effect of a Back-Facing Step
,” ASME Paper No. GT-2003-38319.
33.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2005, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage and Assembly Features
,” ASME Paper No. GT-2005-68340.
34.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2005, “
Effects of Mid-Passage Gap, Endwall Misalignment and Roughness on Endwall Film-Cooling
,” ASME Paper No. GT-2005-68900.
35.
Barigozzi
,
G.
,
Benzoni
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
, 2005, “
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film Cooled Endwall
,” ASME Paper No. GT-2005-68544.
36.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP, TSP and IR Measurement Techniques for Flat Plate Film Cooling
,” ASME Paper No. HT-2005-72363.
37.
Gao
,
Z.
,
Wright
,
L. M.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP and Transient IR Measurement Techniques for Leading Edge Film Cooling
,” ASME Paper No. IMECE-2005-80146.
38.
Ahn
,
J.
,
Mhetras
,
S. P.
, and
Han
,
J. C.
, 2004, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,” ASME Paper No. GT-2004-53249.
39.
Mhetras
,
S. M.
,
Yang
,
H.
,
Gao
,
Z.
, and
Han
,
J. C.
, 2005, “
Film Cooling Effectiveness on Squealer Rim Walls and Squealer Cavity Floor of a Gas Turbine Blade Tip Using Pressure Sensitive Paint
,” ASME Paper No. GT-2005-68387.
40.
Schobeiri
,
M. T.
, 1989, “
Optimum Trailing Edge Ejection for Cooled Gas Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
111
(
4
), pp.
510
514
.
41.
Schobeiri
,
M. T.
, and
Pappu
,
K.
, 1999, “
Optimization of Trailing Edge Ejection Mixing Losses Downstream of Cooled Turbine Blades: A Theoretical and Experimental Study
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
118
125
.
42.
McLachlan
,
B.
, and
Bell
,
J.
, 1995, “
Pressure-Sensitive Paint in Aerodynamic Testing
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
470
485
.
43.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
44.
Goldstein
,
R. J.
, 1971, “
Film Cooling
,”
Adv. Heat Transfer
0065-2717,
7
, pp.
321
379
.
You do not currently have access to this content.