The development of turbulent spots in a separation bubble under elevated freestream turbulence levels is examined through direct numerical simulation. The flow Reynolds number, freestream turbulence level, and streamwise pressure distribution are typical of the conditions encountered on the suction side of low-pressure turbine blades of gas-turbine engines. Based on the simulation results, the spreading and propagation rates of the turbulent spots and their internal structure are documented, and comparisons are made to empirical correlations that are used for predicting the transverse growth and streamwise propagation characteristics of turbulent spots. The internal structure of the spots is identified as a series of vortex loops that develop as a result of low-velocity streaks generated in the shear layer. A frequency that is approximately 50% higher than that of the Kelvin–Helmholtz instability is identified in the separated shear layer, which is shown to be associated with the convection of these vortex loops through the separated shear layer. While freestream turbulence is noted to promote breakdown of the laminar separated shear layer into turbulence through the generation of turbulent spots, evidence is found to suggest coexistence of the Kelvin–Helmholtz instability, including the possibility of breakdown to turbulence through this mechanism.

1.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
, 2008, “
Numerical Study of Instability Mechanisms Leading to Transition in Separation Bubbles
,”
ASME J. Turbomach.
0889-504X,
130
(
3
), pp.
021006
.
2.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2003, “
Effects of Periodic Unsteadiness, Free-Stream Turbulence and Flow Reynolds Number on Separation-Bubble Transition
,” ASME Paper No. GT2003-38626.
3.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2005, “
Boundary-Layer Transition Affected by Surface Roughness and Free-Stream Turbulence
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
449
457
.
4.
Zhang
,
X. F.
, and
Hodson
,
H.
, 2005, “
Combined Effects of Surface Trips and Unsteady Wakes on the Boundary Layer Development of an Ultra-High-Lift LP Turbine
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
479
488
.
5.
Emmons
,
H. W.
, 1951, “
The Laminar-Turbulent Transition in a Boundary Layer—Part 1
,”
J. Aeronaut. Sci.
0095-9812,
18
, pp.
490
498
.
6.
Schubauer
,
G. B.
, and
Klebanoff
,
P. S.
, 1955, “
Contributions on the Mechanics of Boundary-Layer Transition
,” NACA Report No. 1289.
7.
Yaras
,
M. I.
, 2007, “
An Experimental Study of Artificially-Generated Turbulent Spots Under Strong Favorable Pressure Gradients and Freestream Turbulence
,”
ASME J. Fluids Eng.
0098-2202,
129
, pp.
563
572
.
8.
Schröder
,
A.
, and
Kompenhans
,
J.
, 2004, “
Investigation of a Turbulent Spot Using Multi-Plane Stereo Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
36
, pp.
82
90
.
9.
Volino
,
R. J.
, 2002, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions—Part I: Mean Flow and Turbulence Statistics
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
645
655
.
10.
Volino
,
R. J.
, 2002, “
Separated Flow Transition Under Simulated Low-Pressure Turbine Airfoil Conditions—Part II: Turbulence Spectra
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
656
664
.
11.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2006, “
Effects of Surface Roughness Geometry on Separation-Bubble Transition
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
349
356
.
12.
D’Ovidio
,
A.
,
Harkins
,
J. A.
, and
Gostelow
,
J. P.
, 2001, “
Turbulent Spots in Strong Adverse Pressure Gradients—Part I: Spot Behavior
,” ASME Paper No. 2001-GT-0194.
13.
D’Ovidio
,
A.
,
Harkins
,
J. A.
, and
Gostelow
,
J. P.
, 2001, “
Turbulent Spots in Strong Adverse Pressure Gradients—Part II: Spot Propagation and Spreading Rates
,” ASME Paper No. 2001-GT-0406.
14.
Watmuff
,
J. H.
, 1999, “
Evolution of a Wave Packet Into Vortex Loops in a Laminar Separation Bubble
,”
J. Fluid Mech.
0022-1120,
397
, pp.
119
169
.
15.
Gostelow
,
J. P.
,
Melwani
,
N.
, and
Walker
,
G. J.
, 1996, “
Effects of Streamwise Pressure Gradients on Turbulent Spot Development
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
737
743
.
16.
Raw
,
M.
, 1996, “
Robustness of Coupled Algebraic Multigrid for the Navier-Stokes Equations
,” AIAA Paper No. 96-0297.
17.
Hutchinson
,
B. R.
, and
Raithby
,
G. D.
, 1986, “
A Multigrid Method Based on the Additive Correction Strategy
,”
Numer. Heat Transfer
0149-5720,
9
, pp.
511
537
.
18.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2006, “
Large-Eddy Simulation of Transition in a Separation Bubble
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
232
238
.
19.
Na
,
Y.
, and
Moin
,
P.
, 1998, “
Direct Numerical Simulation of a Separated Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
374
, pp.
379
405
.
20.
Alam
,
M.
, and
Sandham
,
N. D.
, 2000, “
Direct Numerical Simulation of ‘Short’ Laminar Separation Bubbles With Turbulent Reattachment
,”
J. Fluid Mech.
0022-1120,
403
, pp.
223
250
.
21.
Michelassi
,
V.
,
Wissink
,
J.
, and
Rodi
,
W.
, 2002, “
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade With Incoming Wakes and Comparison with Experiments
,”
Flow, Turbul. Combust.
1386-6184,
69
, pp.
295
330
.
22.
Kalitzin
,
G.
, 2003, “
DNS of Fully Turbulent Flow in a LPT Passage
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
636
644
.
23.
Roach
,
P. E.
, 1987, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
0142-727X,
8
, pp.
82
92
.
24.
Johnson
,
M. W.
, and
Ercan
,
A. H.
, 1999, “
A Physical Model for Bypass Transition
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
95
104
.
25.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
, 2005, “
Separation-Bubble-Transition Measurements on a Low-Re Airfoil Using Particle Image Velocimetry
,” ASME Paper No. GT2005-68663.
26.
Ustinov
,
M. V.
, 2003, “
Receptivity of the Flat-Plate Boundary Layer to Free-Stream Turbulence
,”
Fluid Dyn.
0015-4628,
38
, pp.
397
408
.
27.
Klebanoff
,
P. S.
, 1971, “
Effect of Free-Stream Turbulence on a Laminar Boundary Layer
,”
Bull. Am. Phys. Soc.
0003-0503,
16
, p.
1323
.
28.
Saric
,
W. S.
,
Reed
,
H. L.
, and
Kerschen
,
E. J.
, 2002, “
Boundary-Layer Receptivity to Freestream Disturbances
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
291
319
.
29.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
, 2001, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
0022-1120,
430
, pp.
149
168
.
30.
Panton
,
R. L.
, 2001, “
Overview of the Self-Sustaining Mechanisms of Wall Turbulence
,”
Prog. Aerosp. Sci.
0376-0421,
37
, pp.
341
383
.
31.
Ho
,
C.
, and
Huerre
,
P.
, 1984, “
Perturbed Free Shear Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
16
, pp.
365
424
.
32.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2005, “
Modeling Transition in Separated and Attached Boundary Layers
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
402
411
.
You do not currently have access to this content.