Large eddy simulation calculations are conducted for flow in a channel with dimples and protrusions on opposite walls with both surfaces heated at three Reynolds numbers, ReH=220, 940, and 9300, ranging from laminar, weakly turbulent, to fully turbulent, respectively. Turbulence generated by the separated shear layer in the dimple and along the downstream rim of the dimple is primarily responsible for heat transfer augmentation on the dimple surface. On the other hand, augmentation on the protrusion surface is mostly driven by flow impingement and flow acceleration between protrusions, while the turbulence generated in the wake has a secondary effect. Heat transfer augmentation ratios of 0.99 at ReH=220,2.9 at ReH=940, and 2.5 at ReH=9300 are obtained. Both skin friction and form losses contribute to pressure drop in the channel. Form losses increase from 45% to 80% with increasing Reynolds number. Friction coefficient augmentation ratios of 1.67, 4.82, and 6.37 are obtained at ReH=220, 940, and 9300, respectively. Based on the geometry studied, it is found that dimples and protrusions may not be viable heat transfer augmentation surfaces when the flow is steady and laminar.

1.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
, 2003, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
0001-1452,
41
(
3
), pp.
337
362
.
2.
Afanasyev
,
V. N.
,
Chudnovsky
,
Ya. P.
,
Leontiev
,
A. I.
, and
Roganov
,
P. S.
, 1993, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid Sci.
0894-1777,
7
(
1
), pp.
1
8
.
3.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
, 1997, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,” ASME Paper No. 97-GT-437.
4.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
, and
Ligrani
,
P. M.
, 2000, “
Local Heat Transfer and Flow Structure on and above a Dimpled Surface in a Channel
,” ASME Paper No. 2000-GT-230.
5.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmood
,
G. I.
, and
Hill
,
M. L.
, 2001, “
Flow Structure Due to Dimple Depressions on a Channel Surface
,”
Phys. Fluids
1070-6631,
13
(
11
), pp.
3442
3451
.
6.
Moon
,
H. K.
,
O’Connel
,
T.
, and
Sharma
,
R.
, 2003, “
Heat Transfer Enhancement Using a Convex-Patterned Surface
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
274
280
.
7.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
, 2004, “
Effects of Dimple Depth on Nusselt Numbers and Friction Factors for Internal Cooling Channel
,” ASME Paper No. GT2004-54232.
8.
Ligrani
,
P. M.
,
Mahmood
,
G. I.
,
Harrison
,
J. L.
,
Clayton
,
C. M.
, and
Nelson
,
D. L.
, 2001, “
Flow Structure and Local Nusselt Number Variation in a Channel With Dimples and Protrusions on Opposite Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4413
4425
.
9.
Mahmood
,
G. I.
,
Sabbagh
,
M. Z.
, and
Ligrani
,
P. M.
, 2001, “
Heat Transfer in a Channel With Dimples and Protrusions on Opposite Walls
,”
J. Thermophys. Heat Transfer
0887-8722,
15
(
3
), pp.
275
283
.
10.
Borisov
,
I.
,
Khalatov
,
A.
,
Kobzar
,
S.
, and
Glezer
,
B.
, 2004, “
Comparison of Thermo-Hydraulic Characteristics for Two Types of Dimpled Surfaces
,” ASME Paper No. GT2004-54204.
11.
Lin
,
Y. L.
,
Shih
,
T. I.-P.
, and
Chyu
,
M. K.
, 1999, “
Computations of Flow and Heat Transfer in a Channel With Rows of Hemispherical Cavities
,” ASME Paper No. 99-GT-263.
12.
Isaev
,
S. A.
, and
Leont’ev
,
A. I.
, 2003, “
Numerical Simulation of Vortex Enhancement of Heat Transfer Under Conditions of Turbulent Flow Past a Spherical Dimple on the Wall of a Narrow Channel
,”
High Temp.
0018-151X,
41
(
5
), pp.
655
679
.
13.
Park
,
J.
,
Desam
,
P. R.
, and
Ligrani
,
P. M.
, 2004, “
Numerical Predictions of Flow Structure Above a Dimpled Surface in a Channel
,”
Numer. Heat Transfer, Part A
1040-7782,
45
(
1
), pp.
1
20
.
14.
Won
,
S. Y.
, and
Ligrani
,
P. M.
, 2004, “
Numerical Predictions of Flow Structure and Local Nusselt Number Ratios Along and Above Dimpled Surfaces With Different Dimple Depths in a Channel
,”
Numer. Heat Transfer, Part A
1040-7782,
46
(
6
), pp.
549
570
.
15.
Patrick
,
W. V.
, and
Tafti
,
D. K.
, 2004, “
Computations of Flow Structures and Heat Transfer in a Dimpled Channel at Low to Moderate Reynolds Number
,” ASME Paper No. HT-FED2004-56171.
16.
Elyyan
,
M.
,
Rozati
,
A.
, and
Tafti
,
D. K.
, 2006, “
Study of Flow Structures and Heat Transfer in Parallel Fins With Dimples and Protrusions Using Large Eddy Simulation
,” ASME Paper No. FEDSM2006-98113.
17.
Tafti
,
D. K.
, 2001, “
GENIDLEST—A Scalable Parallel Computational Tool for Simulating Complex Turbulent Flows
,”
Proceedings of ASME Fluids Engineering Division (FED)
, Vol.
256
,
ASME
,
New York
.
18.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
, pp.
1760
1765
.
19.
Viswanathan
,
A. K.
, and
Tafti
,
D. K.
, 2005, “
Detached Eddy Simulation of Turbulent Flow and Heat Transfer in Ribbed Duct
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
888
896
.
20.
Sewall
,
E. A.
,
Tafti
,
D. K.
,
Graham
,
A. B.
, and
Thole
,
K. A.
, 2006, “
Experimental Validation of Large Eddy Simulation of Flow and Heat Transfer in a Stationary Ribbed Duct
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
243
258
.
21.
Zhang
,
L. W.
,
Tafti
,
D. K.
,
Najjar
,
F. M.
, and
Balachander
,
S.
, 1997, “
Computations of Flow and Heat Transfer in Parallel-Plate Fin Heat Exchangers on the CM-5: Effects of Flow Unsteadiness and Three-Dimensionality
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
6
), pp.
1325
1341
.
22.
Incropera
,
F.
, and
DeWitt
,
D P.
, 1996,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
,
New York
.
23.
Tafti
,
D. K.
, 2005, “
Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for Internal Cooling of Turbine Blades
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
92
104
.
24.
Kim
,
J.
,
Moin
,
P.
, and
Moster
,
R.
, 1987, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
0022-1120,
177
, pp.
133
166
.
25.
Ekkad
,
S. V.
, and
Nasir
,
H.
, 2003, “
Dimple Enhanced Heat Transfer in High Aspect Ratio Channels
,”
J. Enhanced Heat Transfer
1065-5131,
10
(
4
), pp.
395
405
.
26.
Chong
,
M. S.
,
Perry
,
A. E.
, and
Cantwell
,
B. J.
, 1990, “
A General Classification of Three-Dimensional Flow Fields
,”
Phys. Fluids A
0899-8213,
2
, pp.
765
777
.
You do not currently have access to this content.