The present study investigates the local heat (mass) transfer characteristics of flow through perforated plates. Two parallel perforated plates were placed, relative to each other, in either staggered, in line, or shifted in one direction. Hole length to diameter ratio of 1.5, hole pitch to diameter ratio of 3.0, and distance between the perforated plates of 1–3 hole diameters are used at hole Reynolds numbers of 3000 to 14,000. For flows through the staggered layers and the layers shifted in one direction, the mass transfer rates on the surface of the effusion plate increase approximately 50% from impingement cooling alone and are about three to four times that with effusion cooling alone (single layer). The high transfer rate is induced by strong secondary vortices formed between two adjacent impinging jets and flow transition so that heat/mass transfer coefficient in the midway region is as high as stagnation heat/mass transfer coefficient. The mass transfer coefficient for the in-line arrangement is approximately 100% higher on the target surface than that of the single layer case. In overall, the staggered hole arrangement shows better performance than other cases.

1.
Martin
,
H.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
0065-2717,
13
, pp.
1
60
.
2.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
, 1979, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
526
531
.
3.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
,
Su
,
C. C.
,
Isoda
,
Y.
, and
Tseng
,
H. H.
, 1982, “
Jet Array Impingement Flow Distributions and Heat Transfer Characteristics
,” NASA Report No. CR-3630.
4.
Behnahani
,
A. I.
, and
Goldstein
,
R. J.
, 1983, “
Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets
,”
ASME J. Eng. Power
0022-0825,
105
, pp.
354
360
.
5.
Hollwarth
,
B. R.
, and
Dagan
,
L.
, 1980, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface Part 1: Average Heat Transfer
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
994
999
.
6.
Hollwarth
,
B. R.
,
Lehmann
,
G.
, and
Rosiczkowski
,
J.
, 1981, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface Part 2: Local Heat Transfer
,”
ASME J. Eng. Power
0022-0825,
105
, pp.
393
402
.
7.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Hussain
,
C. I.
,
Mkpadi
,
M. C.
, and
Nazari
,
A.
, 1988, “
Impingement/Effusion Cooling: Overall Wall Heat Transfer
,” ASME Paper No. 88-GT-290.
8.
Al Dabagh
,
A. M.
,
Andrews
,
G. E.
,
Abdul Hussain
,
R. A. A.
,
Hussain
,
C. I.
,
Nazari
,
A.
, and
Wu
,
J.
, 1989, “
Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient
,” ASME Paper No. 89-GT-188.
9.
Funazaki
,
K.
,
Imamatsu
,
N.
, and
Yamawaki
,
S.
, 1999, “
Heat Transfer Measurements of an Integrated Cooling Configuration Designed for Ultra-High Temperature Turbine Blades
,”
Proceedings of Seventh IGTC
, Vol.
2
, pp.
833
840
.
10.
Cho
,
H. H.
, and
Rhee
,
D. H.
, 2001, “
Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling System
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
601
608
.
11.
Rhee
,
D. H.
,
Choi
,
J. H.
, and
Cho
,
H. H.
, 2003, “
Heat (Mass) Transfer on Effusion Plate in Impingement/Effusion Cooling Systems
,”
J. Thermophys. Heat Transfer
0887-8722,
17
(
1
), pp.
95
102
.
12.
Cho
,
H. H.
, and
Goldstein
,
R. J.
, 1997, “
Total Coverage Discrete Hole Wall Cooling
,”
ASME J. Turbomach.
0889-504X,
119
(
2
), pp.
320
329
.
13.
Goldstein
,
R. J.
, and
Cho
,
H. H.
, 1995, “
A Review of Mass Transfer Measurement Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
416
434
.
14.
Kline
,
S. J.
, and
McClintock
,
F.
, 1953, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
15.
Fluent 6.1 User’s Guide Volume
2
, Chaps. 8–19, 2003.
16.
Lee
,
J. H.
, and
Lee
,
S. J.
, 2000, “
The Effect of Nozzle Configuration on Stagnation Region Heat Transfer Enhancement of Axisymmetric Jet Impingement
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3497
3509
.
17.
Cho
,
H. H.
,
Lee
,
C. H.
, and
Kim
,
Y. S.
, 1997, “
Characteristics of Heat Transfer in Impinging Jets by Control of Vortex Pairing
,” ASME Paper No. 97-GT-276.
You do not currently have access to this content.