A novel turbine film-cooling hole shape has been conceived and designed at NASA Glenn Research Center. This “antivortex” design is unique in that it requires only easily machinable round holes, unlike shaped film-cooling holes and other advanced concepts. The hole design is intended to counteract the detrimental vorticity associated with standard circular cross-section film-cooling holes. This vorticity typically entrains hot freestream gas and is associated with jet separation from the turbine blade surface. The antivortex film-cooling hole concept has been modeled computationally for a single row of 30 deg angled holes on a flat surface using the 3D Navier–Stokes solver GLENN-HT. A blowing ratio of 1.0 and density ratios of 1.05 and 2.0 are studied. Both film effectiveness and heat transfer coefficient values are computed and compared to standard round hole cases for the same blowing rates. A net heat flux reduction is also determined using both the film effectiveness and heat transfer coefficient values to ascertain the overall effectiveness of the concept. An improvement in film effectiveness of about 0.2 and in net heat flux reduction of about 0.2 is demonstrated for the antivortex concept compared to the standard round hole for both blowing ratios. Detailed flow visualization shows that as expected, the design counteracts the detrimental vorticity of the round hole flow, allowing it to remain attached to the surface.

1.
Goldstein
,
R. J.
, 1971,
Adv. Heat Transfer
0065-2717,
7
, pp.
321
379
.
2.
Kercher
,
D. M.
, 1998, “
A Film-Cooling CFD Bibliography: 1971–1996
,”
Int. J. Rotating Mach.
1023-621X,
4
(
1
), pp.
61
72
.
3.
Kercher
,
D. M.
, 2000, “
Turbine Airfoil Leading Edge Film Cooling Bibliography: 1972–1998
,”
Int. J. Rotating Mach.
1023-621X,
6
(
5
), pp.
313
319
.
4.
Pedersen
,
D. R.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
, 1977, “
Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
620
627
.
5.
Foster
,
N. W.
, and
Lampard
,
D.
, 1980, “
The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
584
588
.
6.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
, 1989, “
Hydrodynamic Measurements of Jets in Crossflow for Gas Turbine Film Cooling Applications
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
139
145
.
7.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
, 1990, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
437
443
.
8.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
, 1991, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
442
449
.
9.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
, 1994, “
Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
358
368
.
10.
Dhungel
,
S.
,
Phillips
,
A.
,
Ekkad
,
S. V.
, and
Heidmann
,
J. D.
, 2007, “
Experimental Investigation of a Novel Anti-Vortex Film Cooling Hole Design
,” ASME Paper No. GT2007–27419.
11.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
, 1997, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,” ASME Paper No. 97-GT-45.
12.
Lemmon
,
C. A.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Formation of Counter-Rotating Vortices in Film-Cooling Flows
,” ASME Paper No. 99-GT-161.
13.
Bunker
,
R. S.
, 2005, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
441
453
.
14.
Shih
,
T. I.-P.
,
Lin
,
Y.-L.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
, 1999, “
Computations of Film Cooling From Holes With Struts
,” ASME Paper No. 99-GT-282.
15.
Papell
,
S. S.
, 1984, “
Vortex Generating Flow Passage Design for Increased Film-Cooling Effectiveness and Surface Coverage
,” Presented at the
22nd National Heat Transfer Conference
,
Niagara Falls
,
N.Y.
, 5–8 Aug. 1984.
16.
Zaman
,
K. B. M. Q.
, and
Foss
,
J. K.
, 1997, “
The Effects of Vortex Generators on a Jet in Crossflow
,”
Phys. Fluids
1070-6631,
9
, pp.
106
114
.
17.
Bunker
,
R. S.
, 2002, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,” ASME Paper No. GT-2002-30178.
18.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
, 2006, “
Effect of Jet Pulsation and Duty Cycle on Film Cooling From a Single Jet on a Leading Edge Model
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
564
571
.
19.
Steinthorsson
,
E.
,
Liou
,
M.-S.
, and
Povinelli
,
L. A.
, 1993, “
Development of an Explicit Multiblock/Multigrid Flow Solver for Viscous Flows in Complex Geometries
,” AIAA Paper No. 93-2380.
20.
Arnone
,
A.
,
Liou
,
M.-S.
, and
Povinelli
,
L. A.
, 1991, “
Multigrid Calculation of Three-Dimensional Viscous Cascade Flows
,” AIAA Paper No. 91-3238.
21.
Rigby
,
D. L.
,
Ameri
,
A. A.
, and
Steinthorsson
,
E.
, 1997, “
Numerical Prediction of Heat Transfer in a Channel With Ribs and Bleed
,” ASME Paper No. 97-GT-431.
22.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
, 1997, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,” ASME Paper No. 97-GT-128.
23.
Wilcox
,
D. C.
, 1994,
Turbulence Modeling for CFD
,
DCW Industries
,
LaCanada
.
24.
Wilcox
,
D. C.
, 1994, “
Simulation of Transition With a Two-Equation Turbulence Model
,”
AIAA J.
0001-1452,
32
(
2
), pp.
247
255
.
25.
Menter
,
F. R.
, 1993, “
Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows
,” AIAA Paper No. 93-2906.
26.
Chima
,
R. V.
, 1996, “
A k-ω Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows
,” NASA Paper No. TM-107051.
27.
Schlichting
,
H.
, 1979,
Boundary Layer Theory
,
7th ed.
,
McGraw-Hill
,
New York
, pp.
312
313
.
28.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
800
806
.
29.
Kapadia
,
S.
,
Roy
,
S.
, and
Heidmann
,
J.
, 2004, “
First Hybrid Turbulence Modeling for Turbine Blade Cooling
J. Thermophys. Heat Transfer
0887-8722,
18
(
1
), pp.
154
156
.
You do not currently have access to this content.