The experimental investigation of film-cooling flow structure provides reliable data for calibrating and validating a 3D feature based computational fluid dynamics (CFD) model being developed synchronously at the ETH Zurich. This paper reports on the flow structure of a film-cooling jet emanating from one hole in a row of holes angled 20 deg to the surface of a flat plate having a 45 deg lateral angle to the freestream flow in a steady flow, flat plate wind tunnel. This facility simulates a film-cooling row typically found on a turbine blade, giving engine representative nondimensionals in terms of geometry and operating conditions. The main flow is heated and the injected coolant is cooled strongly to obtain the requisite density ratio. All three velocity components were measured using a nonintrusive stereoscopic particle image velocimetry (PIV) system. The blowing ratio and density ratio are varied for a single compound angled geometry, and the complex three dimensional flow is investigated with special regard to vortical structure.

1.
Abhari
,
R. S.
, and
Epstein
,
A. H.
, 1994, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
818
827
.
2.
Abhari
,
R. S.
, 1996, “
Impact of Rotor-Stator Interaction on Turbine Blade Film Cooling
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
123
133
.
3.
Ligrani
,
P. M.
,
Ciriello
,
S.
, and
Bishop
,
D. T.
, 1992, “
Heat Transfer, Adiabatic Effectiveness and Injectant Distributions Downstream of a Single Row and Two Staggered Rows of Compound Angle Film Cooling Holes
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
687
700
.
4.
Ligrani
,
P. M.
, and
Ramsey
,
A. E.
, 1997, “
Film Cooling From Spanwise-Oriented Holes in Two Staggered Rows
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
562
567
.
5.
Reiss
,
H.
, and
Boelcs
,
A.
, 2000, “
Experimental Study of Showerhead Cooling on a Cylinder Comparing Several Configurations Using Cylindrical and Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
162
169
.
6.
Honami
,
S.
,
Shizawa
,
T.
, and
Uchiyama
,
A.
, 1994, “
Behaviour of the Laterally Injected Jet in Film-Cooling-Measurements of Surface-Temperature and Velocity-Temperature Field Within the Jet
,”
ASME J. Turbomach.
0889-504X,
116
(
1
), pp.
106
112
.
7.
Ekkad
,
S. V.
,
Zapata
,
D.
, and
Han
,
J. C.
, 1997, “
Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystgal Image Method
,”
ASME J. Turbomach.
0889-504X,
119
(
3
), pp.
580
586
.
8.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003, “
Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
57
64
.
9.
Sen
,
B.
,
Schmidt
,
D.
, and
Bogard
,
D.
, 1996, “
Film Cooling Compound Angled Holes: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
800
806
.
10.
Schmidt
,
D.
,
Sen
,
B.
, and
Bogard
,
D.
, 1996, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
807
813
.
11.
Jung
,
I. S.
, and
Lee
,
J. S.
, 2000, “
Effects of Orientation Angles on Film Cooling Over a Flat Plat: Boundary Layer Temperature Distributions and Adiabatic Film Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
122
(
1
), pp.
153
160
.
12.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film-Cooling Physics: Part 1—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
102
112
.
13.
McGovern
,
K. T.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film-Cooling Physics: Part II—Compound Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
113
121
.
14.
Hyams
,
D. G.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film-Cooling Physics: Part III—Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
122
132
.
15.
Brittingham
,
R. A.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film-Cooling Physics: Part IV—Compound-Angle Injection With Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
133
145
.
16.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
, 1996, “
The Effect of High Freestream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
118
(
4
), pp.
814
825
.
17.
Bernsdorf
,
S.
,
Rose
,
M.
, and
Abhari
,
R. S.
, 2006, “
Modeling of Film Cooling—Part 1: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
141
149
.
18.
Bernsdorf
,
S.
, 2005, “
Experimental Investigation of Film Cooling Flow Structure
,” Ph.D. thesis, ETH Zurich, Zurich, Switzerland.
19.
Burdet
,
A.
, 2005, “
A Computationally Efficient Feature-Based Jet Model for Prediction of Film-Cooling Flows
,” Ph.D. thesis, ETH Zurich, Zurich, Switzerland.
20.
Burdet
,
A.
,
Abhari
,
R. S.
, and
Rose
,
R. G.
, 2007, “
Modeling of Film Cooling—Part II: Model for Use in Three-Dimensional Computational Fluid Dynamics
,”
ASME J. Turbomach.
0889-504X,
129
, pp
221
231
.
21.
Fric
,
T. F.
, and
Roshko
,
A.
, 1991, “
Structure in the Near Field of a Transverse Jet
,”
Turbulent Shear Flows
,
7
, pp.
225
237
.
22.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
, 1996, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
0022-1120,
306
, pp.
111
144
.
23.
Moussa
,
Z. M.
,
Trischka
,
J. W.
, and
Eskinazi
,
S.
, 1977, “
The Near Field in the Mixing of a Round Jet With a Cross-Stream
,”
J. Fluid Mech.
0022-1120,
80
, pp.
49
80
.
24.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
, 2001,
Particle Image Velocimetry: A Practical Guide
,
Springer-Verlag
,
Berlin∕GmbH and Co.
,
Heidelberg
.
25.
Prasad
,
A. K.
, 2000, “
Stereoscopic Particle Image Velocimetry
,”
Exp. Fluids
0723-4864,
29
(
2
), pp.
103
116
.
26.
Dantec Dynamics
, 2002,
Flow Manager Software and Introduction to PIV Instrumentation
, Dantec Dynamics A∕S.
You do not currently have access to this content.