A new, computationally efficient method is presented for processing transient thin-film heat transfer gauge signals. These gauges are widely used in gas turbine heat transfer research, where, historically, the desired experimental heat transfer flux signals, q, are derived from transient measured surface-temperature signals, T, using numerical approximations to the solutions of the linear differential equations relating the two. The new method uses known pairs of exact solutions, such as the T response due to a step in q, to derive a sampled approximation of the impulse response of the gauge system. This impulse response is then used as a finite impulse response digital filter to process the sampled T signal to derive the required sampled q signal. This is computationally efficient because the impulse response need only be derived once for each gauge for a given sample rate, but can be reused repeatedly, using optimized MATLAB filter routines and is highly accurate. The impulse response method can be used for most types of heat flux gauge. In fact, the method is universal for any linear measurement systems which can be described by linear differential equations where theoretical solution pairs exist between input and output. Examples using the new method to process turbomachinery heat flux signals are given.

1.
Oldfield
,
M. L. G.
, 2000, “
Guide to Impulse Response Heat Transfer Signal Processing Version 2
,” OUEL Report No. 2233/2000, Department of Engineering Science, University of Oxford.
2.
Guo
,
S. M.
,
Lai
,
C. C.
,
Jones
,
T. V.
,
Oldfield
,
M. L. G.
,
Lock
,
G. D.
, and
Rawlinson
,
A. J.
, 2000, “
Influence of Surface Roughness on Heat Transfer and Effectiveness for a Fully Film Cooled Nozzle Guide Vane Measured by Wide Band Liquid Crystals and Direct Heat Flux Gauges
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
709
716
.
3.
Anthony
,
R. J.
,
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
, 1999, “
Development of High-Density Arrays of Thin Film Heat Transfer Gauges
,”
Proceedings 5th ASME/JSME Thermal Engineering Joint Conference
,
San Diego, CA
, March 15–19.
4.
Anthony
,
R. J.
,
Jones
,
T. V.
, and
LaGraff
,
J. E.
, 2005, “
High Frequency Surface Heat Flux Imaging of Bypass Transition
,”
J. Turbomach.
0889-504X,
127
, pp.
241
250
.
5.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,” Paper No. AGARD AG-165.
6.
Oldfield
,
M. L. G.
,
Jones
,
T. V.
, and
Schultz
,
D. L.
, 1978, “
On-Line Computer for Transient Turbine Cascade Instrumentation
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
14
(
5
), pp.
738
749
.
7.
Jones
,
T. V.
, 1995 “
The Thin Film Heat Transfer Gauges—A History and New Developments
,”
Proceedings 4th National UK Heat Transfer Conference
,
Manchester, UK
, pp.
1
12
.
8.
Oldfield
,
M. L. G.
,
Burd
,
H. J.
, and
Doe
,
N. G.
, 1984, “
Design of Wide-Bandwidth Analogue Circuits for Heat Transfer Instrumentation in Transient Tunnels
,”
Heat & Mass Transfer in Rotating Machinery, Proceedings 16th Symposium of the International Centre for Heat and Mass Transfer
,
Dubrovnik
, September 1982,
D. E.
Metzger
and
N. H.
Afga
, eds.,
Hemisphere
,
Washington, DC
.
9.
Jones
,
T. V.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
, and
Arts
,
T.
, 1993, “
Transient Cascade Testing
,”
Advanced Methods for Cascade Testing
(AGARDograph AGARD-AG-328),
C.
Hirsch
, ed., NATO AGARD, pp.
103
152
.
10.
Dunn
,
M. G.
, 1985, “
Measurement of Heat flux and Pressure in a Turbine Stage
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
76
83
.
11.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
, 1986, “
New Heat Transfer Gauges for Use on Multi-layered Substrates
,”
ASME J. Turbomach.
0889-504X,
108
, pp.
153
160
.
12.
Doorly
,
J. E.
, and
Oldfield
,
M. L. G.
, 1987, “
The Theory of Advanced Multi-layer Thin Film Heat Transfer Gauges
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
6
), pp.
1159
1168
.
13.
Epstein
,
A. H.
,
Guenette
,
G. R
,
Norton
,
R. J. G.
, and
Yuzhang
,
G.
, 1986, “
High Frequency Response Heat Flux Gauges
,”
Rev. Sci. Instrum.
0034-6748,
54
(
4
), pp
639
649
.
14.
Piccini
,
E.
,
Guo
,
S. M.
, and
Jones
,
T. V.
, 2000, “
The Development of a New Direct Heat Flux Gauge for Heat Transfer Facilities
,”
Meas. Sci. Technol.
0957-0233,
11
(
4
), pp.
342
349
.
15.
Diller
,
T. E.
, 1993, “
Advances in Heat Flux Measurements
,”
Advances in Heat Transfer
, Vol.
23
,
Academic
,
New York, NY
, Vol.
23
, pp.
279
368
.
16.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
W.
, 2004, “
Improved Fast-Response Heat Transfer Instrumentation for Short-Duration Wind Tunnels
,”
Meas. Sci. Technol.
0957-0233,
15
, pp.
1897
1909
.
17.
Ainsworth
,
R. W.
,
Allen
,
J. L.
,
Davies
,
M. R. D.
,
Doorly
,
J. E.
,
Forth
,
C. J. P.
,
Hilditch
,
M. A.
,
Oldfield
,
M. L. G.
, and
Sheard
,
A. G.
, 1989, “
Developments in Instrumentation and Processing for Transient Heat Transfer Measurements in a Full Stage Model Turbine
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
20
27
.
18.
Iliopoulou
,
V.
,
Denos
,
R.
,
Billiard
,
N.
, and
Arts
,
T.
, 2004, “
Time-Averaged and Time-Resolved Heat Flux Measurements on a Turbine Stator Blade Using Two-Layered Thin-Film Gauges
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
570
577
.
19.
Denbigh
,
P.
, 1998,
System Analysis and Signal Processing
,
Addison-Wesley
,
Reading, MA
.
20.
Matlab, “
The Mathworks
,” 2007, ⟨http://www.mathworks.comhttp://www.mathworks.com
21.
Proakis
,
J. G.
, and
Manolakis
,
D. M.
, 1992,
Digital Signal Processing: Principles, Algorithms and Applications
, 2nd ed.,
Macmillan
,
New York
.
22.
Jones
,
T. V.
, and
Guo
,
S. M.
, 1999, “
Double Sided Heat Transfer data Analysis
,” private communication.
23.
Neal
,
P. M.
,
Oldfield
,
M. L. G.
, and
Cameron
,
S. A.
, 1992, “
A Modular, High Speed Transputer Based Data Acquisition System
,”
Transputer/Occam Japan
,
S.
Noguchi
, ed., Proceeding 4th Transputer/Occam International Conference, Tokyo, Japan, June 2–5,
IOS Press
, Vol.
4
, pp.
242
264
.
24.
Chana
,
K. S
, and
Jones
,
T. V.
, 2003, “
An Investigation on Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
513
520
.
25.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2004, “
An Investigation of the Heat Transfer and Static Pressure Field on the Over-Tip Casing of a Shroudless Transonic Turbine Rotor at Engine Representative Flow Conditions. (I). Time-Mean Results
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
933
944
.
26.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2004, “
An Investigation of the Heat Transfer and Static Pressure Field on the Over-tip Casing of a Shroudless Transonic Turbine Rotor at Engine Representative Flow Conditions. (II). Time-Resolved Results
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
945
960
.
27.
Yoshino
,
S.
, 2002, “
Heat Transfer in Rotating Experiments
,” D.Philosopy thesis, University of Oxford, Oxford, UK.
You do not currently have access to this content.