Wake-induced laminar-turbulent transition is studied at the leading edge of a C4-section compressor stator blade in a 1.5-stage axial compressor. Surface hot-film sensor observations are interpreted with the aid of numerical solutions from UNSFLO, a quasi-three-dimensional viscous-inviscid flow solver. The passage of a rotor wake, with its associated negative jet, over the stator leading edge is observed to have a destabilizing effect on the suction surface boundary layer. This leads to transition closer to the stator leading edge than would have occurred under steady flow conditions. The strength of this phenomenon is influenced by the rotor-stator axial gap and the variability of individual rotor wake disturbances. A variety of transition phenomena is observed near the leading edge in the wake path. Wave packets characteristic of Tollmien-Schlichting waves are observed to amplify and break down into turbulent spots. Disturbances characteristic of the streaky structures occurring in bypass transition are also seen. Examination of suction surface disturbance and wake-induced transitional strip trajectories points to the leading edge as the principal receptivity site for suction surface transition phenomena at design loading conditions. This contrasts markedly with the pressure surface behavior, where transition at design conditions occurs remotely from leading-edge flow perturbations associated with wake chopping. Here, the local receptivity of the boundary layer to the wake passing disturbance and turbulent wake fluid discharging onto the blade surface may be of greater importance.

1.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
2.
Walker
,
G. J.
, 1993, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines: A Discussion
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
207
217
.
3.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines—Part I: Composite Picture
,”
ASME J. Turbomach.
0889-504X,
119
(
1
), pp.
114
127
.
4.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines—Part II: Compressors
,”
ASME J. Turbomach.
0889-504X,
119
(
3
), pp.
426
444
.
5.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines—Part III: LP Turbines
,”
ASME J. Turbomach.
0889-504X,
119
(
2
), pp.
234
246
.
6.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Hughes
,
J. D.
, 1999, “
Periodic Transition on an Axial Compressor Stator: Incidence and Clocking Effects—Part II: Transition Onset Predictions
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
408
415
.
7.
Hughes
,
J. D.
, and
Walker
,
G. J.
, 2001, “
Natural Transtion Phenomena on an Axial Compressor Blade
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
392
401
.
8.
Walker
,
G. J.
, 1989, “
Transitional Flow on Axial Turbomachine Blading
,”
AIAA J.
0001-1452,
27
(
5
), pp.
595
602
.
9.
Boiko
,
A. V.
,
Westin
,
K. J. A.
,
Klingmann
,
B. G. B.
,
Kozlov
,
V. V.
, and
Alfredsson
,
P. H.
, 1994, “
Experiments in a Boundary Layer Subjected to Free Stream Turbulence—Part II: The Role of TS-Waves in the Transition Process
,”
J. Fluid Mech.
0022-1120,
281
, pp.
219
245
.
10.
Asai
,
M.
,
Minagawa
,
M.
, and
Nishioka
,
M.
, 2002, “
The Instability and Breakdown of a Near-Wall Low-Speed Streak
,”
J. Fluid Mech.
0022-1120,
455
, pp.
289
314
.
11.
Brandt
,
L.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
, 2004, “
Transition in Boundary Layers Subject to Free-Stream Turbulence
,”
J. Fluid Mech.
0022-1120,
517
, pp.
167
198
.
12.
Bakchinov
,
A. A.
,
Westin
,
K. J. A.
,
Kozlov
,
V. V.
, and
Alfredsson
,
P. H.
, 1998, “
Experiments on Localized Disturbances in a Flat Plate Boundary Layer—Part II: Interaction Between Localized Disturbances and TS-Waves
,”
Eur. Phys. J. B
1434-6028,
17
(
6
), pp.
847
873
.
13.
Boiko
,
A. V.
,
Grek
,
G. R.
,
Dovgal
,
A. V.
, and
Kozlov
,
V. V.
, 2002,
The Origin of Turbulence in Near-Wall Flows
,
Springer
, New York.
14.
Hobson
,
G. V.
,
Wakefield
,
B. E.
, and
Roberts
,
W. B.
, 1999, “
Turbulence Amplification With Incidence at the Leading Edge of a Compressor Cascade
,”
Int. J. Rotating Mach.
1023-621X,
5
(
2
), pp.
89
98
.
15.
Soranna
,
F.
,
Chow
,
Y.
,
Uzol
,
O.
, and
Katz
,
J.
, 2006, “
The Effect of IGV Wake Impingement on the Flow Structure and Turbulence Around a Rotor Blade
,”
ASME J. Turbomach.
0889-504X,
128
(
1
), pp.
82
95
.
16.
Kendall
,
J. M.
, 1991, “
Studies on Laminar Boundary-Layer Receptivity to Freestream Turbulence Near a Leading Edge
,” ASME Fluids Engineering Division (FED),
ASME
, New York, Vol.
114
, pp.
23
30
.
17.
Walker
,
G. J.
,
Hughes
,
J. D.
,
Köhler
,
I.
, and
Solomon
,
W. J.
, 1998, “
The Influence of Wake-Wake Interactions on Loss Fluctuations of a Downstream Axial Compressor Blade Row
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
695
704
.
18.
Walker
,
G. J.
,
Hughes
,
J. D.
, and
Solomon
,
W. J.
, 1999, “
Periodic Transition on an Axial Compressor Stator: Incidence and Clocking Effects—Part I: Experimental Data
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
398
407
.
19.
Henderson
,
A. D.
,
Walker
,
G. J.
, and
Hughes
,
J. D.
, 2006, “
Influence of Turbulence on Wake Dispersion and Blade Row Interaction in an Axial Compressor
,”
ASME J. Turbomach.
0889-504X,
128
(
1
), pp.
150
157
.
20.
Hodson
,
H. P.
,
Huntsman
,
I.
, and
Steele
,
A. B.
, 1994, “
An Investigation of Boundary Layer Development in a Multistage LP Turbine
,”
ASME J. Turbomach.
0889-504X,
116
(
3
), pp.
375
383
.
21.
Solomon
,
W. J.
, 1996, “
Unsteady Boundary Layer Transition on Axial Compressor Blades
,” Ph.D. thesis, University of Tasmania, Australia.
22.
Giles
,
M.
, and
Haimes
,
R.
, 1993, “
Validation of a Numerical Method for Unsteady Flow Calculations
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
110
117
.
23.
Cebeci
,
T.
, and
Smith
,
A. M. O.
, 1974,
Analysis of Turbulent Boundary Layers
,
Academic Press
, New York.
24.
Drela
,
M.
, and
Giles
,
M. B.
, 1987, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
0001-1452,
25
(
10
), pp.
1347
1355
.
25.
Schlichting
,
H.
, 1968,
Boundary-Layer Theory
,
6th ed.
McGraw-Hill
, New York.
26.
Wu
,
X.
,
Jacobs
,
R. G.
,
Hunt
,
J. C. R.
, and
Durbin
,
P. A.
, 1999, “
Simulations of Boundary Layer Transition Induced by Periodically Passing Wakes
,”
J. Fluid Mech.
0022-1120,
398
, pp.
109
153
.
27.
Boxhall
,
P. J.
, 1971, “
Unsteady Flow Phenomena in an Axial-Flow Compressor
,” M.Eng.Sc. thesis, University of Tasmania, Australia.
28.
Gorrell
,
S. E.
,
Okiishi
,
T. H.
, and
Copenhaver
,
W. W.
, 2003, “
Stator-Rotor Interactions in a Transonic Compressor—Part I: Effect of Blade-Row Spacing on Performance
,”
ASME J. Turbomach.
0889-504X,
125
(
2
), pp.
328
335
.
29.
Ho
,
Y. H.
, and
Lakshminarayana
,
B.
, 1995, “
Computation of Unsteady Viscous Flow Through Turbomachinery Blade Row Due to Upstream Rotor Wakes
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
541
552
.
30.
Stieger
,
R. D.
, and
Hodson
,
H. P.
, 2005, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
0889-504X,
127
(
2
), pp.
388
394
.
31.
Obremski
,
H. J.
, and
Fejer
,
A. A.
, 1967, “
Transition in Oscillating Boundary Layer Flows
,”
J. Fluid Mech.
0022-1120,
29
(
1
), pp.
93
111
.
32.
Hughes
,
J. D.
, 2001, “
Unsteady Aerodynamics in an Axial Flow Compressor
,” Ph.D. thesis, University of Tasmania, Australia.
33.
Cohen
,
J.
,
Breuer
,
K. S.
, and
Haritondis
,
J. H.
, 1991, “
On the Evolution of a Wave Packet in a Laminar Boundary Layer
,”
J. Fluid Mech.
0022-1120,
225
, pp.
575
606
.
34.
Zaki
,
T. A.
, and
Durbin
,
P. A.
, 2005, “
Mode Interaction and the Bypass Route to Transition
,”
J. Fluid Mech.
0022-1120,
531
, pp.
85
111
.
35.
Westin
,
K. J. A.
,
Bakchinov
,
A. A.
,
Kozlov
,
V. V.
, and
Alfredsson
,
P. H.
, 1998, “
Experiments on Localized Disturbances in a Flat Plate Boundary Layer—Part I: The Receptivity and Evolution of a Localized Free Stream Disturbance
,”
Eur. Phys. J. B
1434-6028,
17
(
6
), pp.
823
846
.
36.
Dovgal
,
A. V.
, and
Kozlov
,
V. V.
, 1983, “
Influence of Acoustic Perturbations on the Flow Structure in a Boundary Layer With Adverse Pressure Gradient
,”
Fluid Dyn.
0015-4628,
18
(
2
), pp.
205
209
.
You do not currently have access to this content.