Film-cooling effectiveness from shaped holes on the near tip pressure side and cylindrical holes on the squealer cavity floor is investigated. The pressure side squealer rim wall is cut near the trailing edge to allow the accumulated coolant in the cavity to escape and cool the tip trailing edge. Effects of varying blowing ratios and squealer cavity depth are also examined on film-cooling effectiveness. The film-cooling effectiveness distributions are measured on the blade tip, near tip pressure side and the inner pressure side and suction side rim walls using pressure sensitive paint technique. The internal coolant-supply passages of the squealer tipped blade are modeled similar to those in the GE-E3 rotor blade with two separate serpentine loops supplying coolant to the film-cooling holes. Two rows of cylindrical film-cooling holes are arranged offset to the suction side profile and along the camber line on the tip. Another row of shaped film-cooling holes is arranged along the pressure side just below the tip. The average blowing ratio of the cooling gas is controlled to be 0.5, 1.0, 1.5, and 2.0. A five-bladed linear cascade in a blow down facility with a tip gap clearance of 1.5% is used to perform the experiments. The free-stream Reynolds number, based on the axial chord length and the exit velocity, was 1,480,000 and the inlet and exit Mach numbers were 0.23 and 0.65, respectively. A blowing ratio of 1.0 is found to give best results on the pressure side, whereas the tip surfaces forming the squealer cavity give best results for M=2. Results show high film-cooling effectiveness magnitudes near the trailing edge of the blade tip due to coolant accumulation from upstream holes in the tip cavity. A squealer depth with a recess of 2.1mm causes the average effectiveness magnitudes to decrease slightly as compared to a squealer depth of 4.2mm.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
1st ed.,
Taylor & Francis
,
New York
, Vol.
1
, Chaps. 2 and 3.
2.
Kim
,
Y. W.
, and
Metzger
,
D. E.
, 1995, “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Model
,”
ASME J. Turbomach.
0889-504X,
117
(
1
), pp.
12
21
.
3.
Kim
,
Y. W.
,
Downs
,
J. P.
,
Soechting
,
F. O.
,
Abdel-Messeh
,
W.
,
Steuber
,
G. D.
, and
Tanrikut
,
S.
, 1995, “
A Summary of the Cooled Turbine Blade Tip Heat Transfer and Film Effectiveness Investigations Performed by Dr. D. E. Metzger
,”
ASME J. Turbomach.
0889-504X,
117
(
1
), pp.
1
11
.
4.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficient and Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
0022-1481
125
, pp.
494
502
.
5.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficient and Film-Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X
125
, pp.
648
657
.
6.
Ahn
,
J.
,
Mhetras
,
S. P.
, and
Han
,
J. C.
, 2005, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
0022-1481
127
, pp.
521
530
.
7.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
, 2005, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes—Part 1: Adiabatic Effectiveness Measurements
,”
ASME J. Turbomach.
0889-504X
127
, pp.
270
277
.
8.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
, 2005, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes—Part 2: Heat Transfer Measurements
,”
ASME J. Turbomach.
0889-504X
127
(
2
), pp.
278
286
.
9.
Mhetras
,
S. P.
,
Yang
,
H.
,
Gao
,
Z.
, and
Han
,
J. C.
, 2005, “
Film-Cooling Effectiveness On Squealer Rim Walls and Squealer Cavity Floor of a Gas Turbine Blade Tip Using Pressure Sensitive Paint
,” ASME Paper No. GT-2005-68387.
10.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
, 1991, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
113
(
3
), pp.
502
507
.
11.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
, 2000, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
(
4
), pp.
692
697
.
12.
Rhee
,
D.
, and
Cho
,
H. H.
, 2006, “
Local Heat/Mass Transfer Characteristics on a Rotating Blade With Flat Tip in a Low Speed Annular Cascade—Part I: Near Tip Surface
,”
ASME J. Turbomach.
0889-504X,
128
(
1
), pp.
96
109
.
13.
Rhee
,
D.
, and
Cho
,
H. H.
, 2006, “
Local Heat/Mass Transfer Characteristics on a Rotating Blade with Flat Tip in a Low Speed Annular Cascade—Part II: Tip and Shroud
,”
ASME J. Turbomach.
0889-504X,
128
(
1
), pp.
110
119
.
14.
Molter
,
S. M.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Bergolhz
,
R. F.
, and
Vitt
,
P.
, 2006, “
Heat-Flux Measurements and Predictions for the Blade Tip Region of a High Pressure Turbine
,” ASME Paper No. GT2006-90048.
15.
Yang
,
T. T.
, and
Diller
,
T. E.
, 1995, “
Heat Transfer and Flow for a Grooved Turbine Blade Tip in a Transonic Cascade
,” ASME Paper No. 95-WA/HT-29.
16.
Bunker
,
R. S.
,
Baily
,
J. C.
, and
Ameri
,
A. A.
, 2000, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 1: Experimental Results
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
263
271
.
17.
Azad
,
G. M. S.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R.
, 2000, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
0889-504X,
122
(
4
), pp.
717
724
.
18.
Azad
,
G. M. S.
,
Han
,
J. C.
, and
Boyle
,
R.
, 2000, “
Heat Transfer and Pressure Distributions on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
122
(
4
), pp.
725
732
.
19.
Bunker
,
R. S.
, and
Baily
,
J. C.
, 2001, “
Effect of Squealer Cavity Depth and Oxidation on Turbine Blade Tip Heat Transfer
,” ASME Paper No. 2001-GT-0155.
20.
Azad
,
G. M. S.
,
Han
,
J. C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 2002, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
124
(
3
), pp.
452
459
.
21.
Kwak
,
J. S.
,
Ahn
,
J.
,
Han
,
J. C.
,
Pang Lee
,
C.
,
Bunker
,
R. S.
,
Boyle
,
R.
, and
Gaugler
,
R.
, 2002, “
Heat Transfer Coefficients on Squealer Tip and Near Tip Regions of a Gas Turbine Blade with Single or Double Squealer
,”
ASME J. Turbomach.
0889-504X
125
, pp.
778
787
.
22.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficient on a Gas Turbine Blade Tip and Near Tip Regions
,”
J. Thermophys. Heat Transfer
0887-8722,
17
(
3
), pp.
297
303
.
23.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficient on the Squealer tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
125
(
4
), pp.
669
677
.
24.
Mayle
,
R. E.
, and
Metzger
,
D. E.
, 1982, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Proceedings of the seventh International Heat Transfer Conference
,
Hemisphere
,
New York
, pp.
87
92
.
25.
Heyes
,
F. J. G.
,
Hodson
,
H. P.
, and
Dailey
,
G. M.
, 1991, “
The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades
,” ASME 91-GT-135.
26.
Teng
,
S.
,
Han
,
J. C.
, and
Azad
,
G. M. S.
, 2001, “
Detailed Heat Transfer Coefficient Distributions on a Large-Scale Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
0022-1481,
123
(
4
), pp.
803
809
.
27.
Papa
,
M.
,
Goldstein
,
R. J.
, and
Gori
,
F.
, 2003, “
Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
90
96
.
28.
Jin
,
P.
, and
Goldstein
,
R. J.
, 2003, “
Local Mass/He at Transfer on a Turbine Blade Tip
,”
Int. J. Rotating Mach.
1023-621X
9
(
2
), pp.
81
95
.
29.
Jin
,
P.
, and
Goldstein
,
R. J.
, 2003, “
Local Mass/He at Transfer on Turbine Blade Near-Tip Surfaces
,”
ASME J. Turbomach.
0889-504X
125
, pp.
521
528
.
30.
Saxena
,
V.
,
Nasir
,
H.
, and
Ekkad
,
S. V.
, 2004, “
Effect of Blade Tip Geometry on Tip Flow and Heat Transfer for a Blade in a Low Speed Cascade
,”
ASME J. Turbomach.
0889-504X
126
, pp.
130
138
.
31.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigb`y
,
L. D.
, 1999, “
Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines
,”
ASME J. Turbomach.
0889-504X,
121
(
4
), pp.
683
693
.
32.
Ameri
,
A. A.
, and
Rigby
,
D. L.
, 1999, “
A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
,” Report No. NASA/CR 1999–209165.
33.
Ameri
,
A. A.
, and
Bunker
,
R. S.
, 2000, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 2: Simulation Results
,”
ASME J. Turbomach.
0889-504X,
122
(
2
), pp.
272
277
.
34.
Yang
,
H.
,
Acharya
,
S.
,
Ekkad
,
S. V.
,
Prakash
,
C.
, and
Bunker
,
R.
, 2002, “
Flow and Heat Transfer Predictions for a Flat-Tip Turbine Blade
,” ASME Paper No. 2002-GT-30190.
35.
Yang
,
H.
,
Acharya
,
S.
,
Ekkad
,
S. V.
,
Prakash
,
C.
, and
Bunker
,
R.
, 2002, “
Numerical Simulation of Flow and Heat Transfer Past a Turbine Blade with a Squealer-Tip
,” ASME Paper No. 2002-GT-30193.
36.
Acharya
,
S.
,
Yang
,
H.
,
Ekkad
,
S. V.
,
Prakash
,
C.
, and
Bunker
,
R.
, 2002, “
Numerical Simulation of Film Cooling on the Tip of a Gas Turbine Blade
,” ASME Paper No. 2002-GT-30553.
37.
Hohlfeld
,
E. M.
,
Christophel
,
J. R.
,
Couch
,
E. L.
, and
Thole
,
K. A.
, 2003, “
Predictions of Cooling Flow Dirt Purge Holes Along the Tip of a Turbine Blade
,” ASME Paper No. 2003-GT-38251.
38.
Yang
,
H.
,
Chen
,
H. C.
, and
Han
,
J. C.
, 2004, “
Numerical Prediction of Film Cooling and Heat Transfer With Different Film Hole Arrangements on the Plane and Squealer Tip of a Gas Turbine Blade
,” ASME Paper No. 2004-GT-53199.
39.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
, 1982, “
Energy Efficient Engine, High Pressure Turbine Test Hardware Detailed Design Report
,” Report No. NASA CR-167955.
40.
McLachlan
,
B.
, and
Bell
,
J.
, 1995, “
Pressure-Sensitive Paint in Aerodynamic Testing
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
470
485
.
41.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP, TSP and IR Measurement Techniques for Flat Plate Film Cooling
,” ASME Paper No. HT-2005–72363.
42.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1989,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
, pp.
47
131
.
You do not currently have access to this content.