The flow near the leading edge stagnation line of a plane turbine cascade airfoil is analyzed using measurements, analytical modeling, and computational fluid dynamics modeling. New measurements of skin friction and pressure are used to show that the aerodynamics of the leading edge, within what we call the stagnation region, are well described by an exact analytical solution for laminar stagnation-point or Hiemenz flow. The skin friction measurements indicate the extent of the stagnation region. The same parameters that characterize Hiemenz flow also characterize stagnation-point potential flow. The thermal resistance of the laminar momentum boundary layer in Hiemenz flow is absent in the inviscid solution. Consequently, the heat transfer in stagnation-point potential flow is greater than the heat transfer in Hiemenz flow. Based on measurements from an earlier study, the highest heat transfer levels in the cascade occur along the leading edge stagnation line. Stagnation-point potential flow provides a close, upper bound for the measured heat transfer at this small but critical location within the stagnation region. This paper describes how to apply the analytical model for predicting cascade stagnation-line heat transfer using only surface pressure calculations.

1.
Holley
,
B. M.
, and
Langston
,
L. S.
, “
Surface Shear Stress and Pressure Measurements in a Plane Turbine Cascade
,” ASME J. Turbomach., to be published.
2.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
, 1977, “
Three Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
99
, pp.
21
28
.
3.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
, 1980, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
257
267
.
4.
Schlichting
,
H.
, 1960,
Boundary Layer Theory
,
4th ed.
,
MacGraw-Hill
,
New York
.
5.
Bons
,
J.
, 2005, “
A Critical Assessment of Reynolds Analogy for Turbine Flows
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
472
485
.
6.
Holley
,
B. M.
,
Becz
,
S.
, and
Langston
,
L. S.
, 2006, “
Measurement and Calculation of Turbine Cascade Endwall Pressure and Shear Stress
,”
ASME J. Turbomach.
0889-504X,
128
(
2
), pp.
232
239
.
7.
Holley
,
B. M.
, 2006, “
A Simple and Accurate Interferometric Fringe Analysis Tool for Skin Friction Measurements
,”
Proceedings of GT2006
, Paper No. GT2006-90581.
8.
Driver
,
D. M.
, 2003, “
Application of Oil-Film Interferometry Skin-Friction Measurement to Large Wind Tunnels
,”
Exp. Fluids
0723-4864,
34
, pp.
717
725
.
9.
Naughton
,
J. W.
, and
Sheplak
,
M.
, 2002, “
Modern Developments in Shear-Stress Measurement
,”
Prog. Aerosp. Sci.
0376-0421,
38
, pp.
515
570
.
10.
Panton
,
R. L.
, 1984,
Incompressible Flow
,
Wiley-Interscience
,
New York
.
11.
1938,
Modern Developments in Fluid Dynamics
,
Goldstein
,
S.
, ed.,
Oxford University Press
,
New York
.
12.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
,
3rd ed.
,
McGraw-Hill
,
New York
.
13.
White
,
F. M.
, 1974,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
14.
FLUENT 6.0 User’s Guide, 2001, Fluent, Inc., Lebanon, NH.
15.
Mills
,
A. F.
, 1995,
Basic Heat and Mass Transfer
,
R. D. Irwin, Inc.
,
Chicago
.
16.
Hoerner
,
S. F.
, 1965,
Fluid-Dynamic Drag
, LCCCN 64-19666.
17.
Ames
,
F. E.
,
Wang
,
C.
, and
Barbot
,
P. A.
, 2003, “
Measurement and Prediction of the Influence of Catalytic and Dry Low NOx Combustor Turbulence on Vane Surface Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
221
231
.
18.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
, 1983, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA CR 168015.
19.
Wang
,
H. P.
,
Goldstein
,
R. J.
, and
Olson
,
S. J.
, 1999, “
Effect of High Free-Stream Turbulence With Large Length Scale on Blade Heat/Mass Transfer
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
217
224
.
20.
Seban
,
R. A.
, 1960, “
The Influence of Free Stream Turbulence on the Local Heat Transfer From Cylinders
,”
ASME J. Heat Transfer
0022-1481,
82
, pp.
101
107
.
21.
Smith
,
M. C.
, and
Kuethe
,
A. M.
, 1966, “
Effects of Turbulence on Laminar Skin Friction and Heat Transfer
,”
Phys. Fluids
0031-9171,
9
(
12
), pp.
2337
2344
.
22.
Kestin
,
J.
, and
Wood
,
R. T.
, 1971, “
The Influence of Turbulence on Mass Transfer From Cylinders
,”
ASME J. Heat Transfer
0022-1481,
93
, pp.
321
327
.
23.
Mehendale
,
A. B.
,
Han
,
J. C.
, and
Ou
,
S.
, 1991, “
Influence of High Mainstream Turbulence on Leading Edge Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
843
850
.
You do not currently have access to this content.