A novel heat flux sensor was tested that allows for time-resolved heat flux measurements in internal ribbed channels related to the study of passages in gas turbine blades. The working principle of the atomic layer thermopile (ALTP) sensor is based on a thermoelectric field created by a temperature gradient over an yttrium-barium-copper-oxide (YBCO) crystal (the transverse Seebeck effect). The sensors very fast frequency response allows for highly time-resolved heat flux measurements up to the 1MHz range. This paper explains the design and working principle of the sensor, as well as the benchmarking of the sensor for several flow conditions. For internal cooling passages, this novel sensor allows for highly accurate, time-resolved measurements of heat transfer coefficients, leading to a greater understanding of the influence of fluctuations in temperature fields.

1.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat Transfer Measurements in Short Duration Hypersonic Facilities
,” AGAR-Dograph No. 165.
2.
Cook
,
W. J.
, and
Felderman
,
E. J.
, 1966, “
Reduction of Data From Thin-Film Heat-Transfer Gages: A Concise Numerical Technique
,”
AIAA J.
0001-1452,
4
(
3
), pp.
561
562
.
3.
Gardon
,
R.
, 1953, “
An Instrument for the Direct Measurement of Intense Thermal Radiation
,”
Rev. Sci. Instrum.
0034-6748,
24
, pp.
366
370
.
4.
Epstein
,
A. H.
,
Guennette
,
G. R.
,
Norton
,
R. J. G.
, and
Cao
,
Y.
, 1986, “
High-Frequency Response Heat-Flux Gauge
,”
Rev. Sci. Instrum.
0034-6748,
57
, pp.
639
649
.
5.
Hayashi
,
M.
,
Sakurai
,
A.
, and
Aso
,
S.
, 1986, “
Measurement of Heat-Transfer Coefficients in Shock Wave—Turbulent Boundary Layer Interaction Regions With a Multi-Layered Thin Film Heat Transfer Gauge
,” NASA TM - 77958.
6.
Godefray
,
J. C.
,
Francois
,
D.
,
Gageant
,
C.
,
Miniere
,
F.
, and
Portat
,
M.
, 1986, “
Thin Film and High Temperature Thermal Sensors Deposited by RF Cathodic Sputtering
,” ONERA TP No. 1986-28.
7.
Hager
, Jr.,
N. E.
, 1965, “
Thin Foil Heat Meter
,”
Rev. Sci. Instrum.
0034-6748,
36
, pp.
1564
1570
.
8.
Mee
,
D. J.
, 2002, “
Boundary-Layer Transition Measurements in Hypervelocity Flows in a Shock Tunnel
,”
AIAA J.
0001-1452,
40
(
8
), pp.
1542
1548
.
9.
Hager
,
J. M.
,
Simmons
,
S.
,
Smith
,
D.
,
Onishi
,
S.
,
Langley
,
L. W.
, and
Diller
,
T. E.
, 1991, “
Experimental Performance of a Heat Microsensor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
113
, pp.
246
250
.
10.
Renk
,
K. F.
,
Betz
,
J.
,
Zeuner
,
S.
,
Lengenfellner
,
H.
, and
Prettl
,
W.
, 1994, “
Thermopile Effect due Laser Radiation Heating in Thin Films of High-Tc-Materials
,”
Physica C
0921-4534,
37-40
, pp.
235
240
.
11.
Zeuner
,
S.
,
Lengfellner
,
H.
, and
Prettl
,
W.
, 1995, “
Thermal Boundary Resistance and Diffusility for YBa2Cu3O7−δ Films
,”
Phys. Rev. B
0163-1829,
51
(
17
), pp.
11903
11908
.
12.
Knauss
,
H.
,
Gaisbauer
,
U.
,
Wagner
,
S.
,
Buntin
,
D.
,
Maslov
,
A.
,
Smorodsky
,
B.
, and
Betz
,
J.
, 2002, “
Calibration Experiments of a New Active Fast Response Heat Flux Sensor to Measure Total Temperature Fluctuations—Part III
,”
Proc. of ICMAR 2002
, Novosibirsk, Russia, Vol.
III
, pp.
86
113
.
13.
Maslov
,
A. A.
,
Bountin
,
D. A.
,
Shiplyuk
,
A. N.
,
Smorodsky
,
B.
,
Knauss
,
H.
,
Gaisbauer
,
U.
,
Wagner
,
S.
, and
Betz
,
J.
, 2004, “
ALTS-Sensor Application for Boundary Layer Measurements
,”
Proc. of ICMAR 2004
, Novosibirsk, Russia, Vol.
II
, pp.
137
146
.
14.
Walker
,
D. A.
, and
Walker
,
M. D.
, 1990, “
Method for Fast Sine-Wave Calibration of Hot-Wire Frequency Response
,”
Rev. Sci. Instrum.
0034-6748,
61
(
3
), pp.
1131
1135
.
15.
Knauss
,
H.
,
Riedel
,
R.
, and
Wagner
,
S.
, 1999, “
The Shock Wind Tunnel of Stuttgart University, A Facility for Testing Hypersonic Vehicles
,” Paper No. AIAA-99-4959.
16.
Fay
,
J. A.
, and
Riddell
,
F. R.
, 1958, “
Theory of Stagnation Point Heat Transfer in Dissociated Air
,”
J. Aeronaut. Sci.
0095-9812,
25
, pp.
73
85
.
17.
Jenkins
,
S.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
,
Roediger
,
T.
,
Knauss
,
H.
, and
Kraemer
,
E.
, 2008, “
Time-Resolved Heat Transfer Measurements on the Tip Wall of a Ribbed Channel Using a Novel Heat Flux Sensor—Part II: Heat Transfer Results
,”
ASME J. Turbomach.
0889-504X,
130
, p.
011019
.
18.
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2004, “
Heat-Transfer Measurements and Predictions for the Vane and Blade of a Rotating High-Pressure Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
101
109
.
19.
Iliopoulou
,
V.
,
Denos
,
R.
,
Billiard
,
N.
, and
Arts
,
T.
, 2004, “
Time-Averaged and Time-Resolved Heat Flux Measurements on a Turbine Stator Blade Using Two-Layered Thin-Film Gauges
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
570
577
.
20.
Holmberg
,
D. G.
, and
Diller
,
T. E.
, 2005,
Simultaneous Heat Flux and Velocity Measurements in Transonic Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
502
506
.
21.
Dunn
,
M. G.
, 2001,
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
637
686
.
22.
Squire
,
H. B.
, 1938,
Modern Developments in Fluid Dynamics
, Vol.
2
,
Clarendon Press
, Oxford.
You do not currently have access to this content.