Internal volutes have a constant outer radius, slightly larger than the diffuser exit radius, and the circumferential increase of the cross section is accommodated by a decrease of the inner radius. They allow the design of compact radial compressors and hence are very attractive for turbochargers and high-pressure pipeline compressors, where small housing diameters have a favorable impact on weight and cost. Internal volutes, however, have higher losses and lower pressure rise than external ones, in which the center of the cross sections is located at a larger radius than the diffuser exit. This paper focuses on the improvement of the internal volute performance by taking into account the interaction between the diffuser and the volute. Two alternative configurations with enhanced aerodynamic performance are presented. The first one features a novel, nonaxisymmetric diffuser̸internal volute combination. It demonstrates an increased pressure ratio and lower loss over most of the operating range at all rotational speeds compared with a symmetric diffuser̸internal volute combination. The circumferential pressure distortion at off design operation is slightly larger than in the original configuration with a concentric vaneless diffuser. Alternatively, a parallel-walled diffuser with low-solidity vanes and an internal volute allows a reduction of the unsteady load on the impeller and an improved performance, approaching that of a vaneless concentric diffuser with a large external volute.

1.
Ayder
,
E.
, and
Van den Braembussche
,
R. A.
, 1991, “
Experimental Study of the Swirling Flow in the Internal Volute of a Centrifugal Compressor
,” ASME Paper No. 91-GT-7.
2.
Ayder
,
E.
,
Van den Braembussche
,
R. A.
, and
Brasz
,
J.
, 1993, “
Experimental and Theoretical Analysis of the Flow in a Centrifugal Compressor Volute
,”
ASME J. Turbomach.
0889-504X,
115
(
3
), pp.
582
589
.
3.
Ayder
,
E.
, and
Van den Braembussche
,
R. A.
, 1994, “
Numerical Analysis of the Three-Dimensional Swirling Flow in a Centrifugal Compressor Volute
,”
ASME J. Turbomach.
0889-504X,
116
(
3
), pp.
462
468
.
4.
Japikse
,
D.
, 1982, “
Advanced Diffusion Levels in Turbocharger Compressors and Component Matching
,”
Proceedings of the First International Conference on Turbocharging and Turbochargers
,
IMECHE
,
London
, pp.
143
155
.
5.
Weber
,
C. R.
, and
Koronowski
,
M. E.
, 1986, “
Meanline Performance Prediciton of Volutes in Centrifugal Compressors
,” ASME Paper No. 86-GT-216.
6.
Hagelstein
,
D.
,
Hillewaert
,
K.
,
Van den Braembussche
,
R. A.
,
Engeda
,
A.
,
Keiper
,
R.
, and
Rautenberg
,
M.
, 2000, “
Experimental and Numerical Investigation of the Flow in a Centrifugal Compressor Volute
,”
ASME J. Turbomach.
0889-504X,
122
(
1
), pp.
22
31
.
7.
Binder
,
R. C.
, and
Knapp
,
R. T.
, 1936, “
Experimental Determination of the Flow Characteristics in the Volutes of Centrifugal Pumps
,”
Trans. ASME
0097-6822,
58
, pp.
649
663
.
8.
Knapp
,
R. T.
, 1941, “
Centrifugal Pump Performances Affected by Design Features
,”
Trans. ASME
0097-6822,
63
(
2
), pp.
251
260
.
9.
Brown
,
W. B.
, and
Bradshaw
,
G. R.
, 1947, “
Design and Performance of Family of Diffusing Scrolls With Mixed-Flow Impeller and Vaneless Diffuser
,” Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics
, Cleveland, OH.
10.
Lee
,
Y.
,
Luo
,
L.
, and
Bein
,
T. W.
, 2000, “
Direct Method for Optimization of a Centrifugal Compressor Vaneless Diffuser
,”
ASME J. Turbomach.
0889-504X,
123
(
1
), pp.
73
79
.
11.
Mishina
,
H.
, and
Gyobu
,
I.
, 1978, “
Performance Investigations of Large Capacity Centrifugal Compressors
,” ASME Paper No. 78-GT-3.
12.
Reunanen
,
A.
,
Pikänen
,
H.
,
Siikonen
,
T.
,
Heiska
,
H.
,
Larjola
,
J.
,
Esa
,
H.
, and
Sallinen
,
P.
, 2000 “
Computational and Experimental Comparison of Different Volute Geometries in a Radial Compressor
,” ASME Paper No. 2000-GT-469.
13.
Hagelstein
,
D.
,
Van den Braembussche
,
R. A.
,
Keiper
,
R.
, and
Rautenberg
,
M.
, 1997, “
Experimental Investigation of the Circumferential Static Pressure Distortion in Centrifugal Compressor Stages
,” ASME Paper No. 97-GT-50.
14.
Miner
,
S. M.
,
Flack
,
R. D.
,
Allaire
,
P. E.
, 1992, “
Two Dimensional Flow Analysis of a Laboratory Flow Pump
,”
J. Turbomach.
0889-504X,
144
, pp.
333
339
.
15.
Chen
,
S. H.
, and
Liaw
,
L. F.
, 1997, “
The Flowfield Calculations of a Centrifugal Pump With Volute
,” ASME Paper No. 97-GT-49.
16.
Flathers
,
B.
, and
Bache
,
G. E.
, 1999, “
Aerodynamically Induced Radial Forces in Centrifugal Compressor—Part 2: Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
(
4
), pp.
725
734
.
17.
Senoo
,
Y.
,
Hayami
,
H.
, and
Ueki
,
H.
, 1983, “
Low Solidity Tandem-Cascade Diffusers for Wide-Flow-Range Centrifugal Blowers
,” ASME Paper No. 83-GT-3.
18.
Engeda
,
A.
, 2001, “
The Design and Performance Results of Simple Flat Plate Low Solidity Diffusers
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
215
, pp.
109
118
.
You do not currently have access to this content.