To protect hot turbine components, cooler air is bled from the high pressure section of the compressor and routed around the combustor where it is then injected through the turbine surfaces. Some of this high pressure air also leaks through the mating gaps formed between assembled turbine components where these components experience expansions and contractions as the turbine goes through operational cycles. This study presents endwall adiabatic effectiveness levels measured using a scaled up, two-passage turbine vane cascade. The focus of this study is evaluating the effects of thermal expansion and contraction for the combustor-turbine interface. Increasing the mass flow rate for the slot leakage between the combustor and turbine showed increased local adiabatic effectiveness levels while increasing the momentum flux ratio for the slot leakage dictated the coverage area for the cooling. With the mass flow held constant, decreasing the combustor-turbine interface width caused an increase in uniformity of coolant exiting the slot, particularly across the pressure side endwall surface. Increasing the width of the interface had the opposite effect thereby reducing coolant coverage on the endwall surface.

1.
Electronic Space Products International “
Inconel 625
,” http://www.espimetals.com/tech/Tech%20Inconel%20625.htmhttp://www.espimetals.com/tech/Tech%20Inconel%20625.htm (Ashland, OR).
2.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film-Cooling on Large-Scale Turbine Endwall
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
524
529
.
3.
Burd
,
S. W.
,
Satterness
,
C. J.
, and
Simon
,
T. W.
, 2000, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part II—Thermal Measurements
,” ASME Paper No. 2000-GT-200.
4.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G.
, 2002, “
Combustor-Turbine Interface Studies: Part 1: Endwall Measurements
,”
J. Turbomach.
0889-504X,
125
, pp.
193
202
.
5.
Colban
,
W. F.
,
Lethander
,
A. T.
,
Thole
,
K. A.
, and
Zess
,
G.
, 2002, “
Combustor-Turbine Interface Studies: Part 2: Flow and Thermal Field Measurements
,”
J. Turbomach.
0889-504X,
125
, pp.
203
209
.
6.
Pasinato
,
H. D.
,
Squires
,
K. D.
, and
Roy
,
R. P.
, 2004, “
Measurement and Modeling of the Flow and Heat Transfer in a Contoured Vane-Endwall Passage
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5685
5702
.
7.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
, 2001, “
Turbine Nozzle Endwall Film-Cooling Study Using Pressure Sensitive Paint
,”
J. Turbomach.
0889-504X,
123
, pp.
730
738
.
8.
Kost
,
F.
, and
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aerodynamic Measurements
,” ASME Paper No. 2001-GT-0145.
9.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness
,”
J. Turbomach.
0889-504X,
123
, pp.
720
729
.
10.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2003, “
Computational Predictions of Endwall Film-Cooling for a First Stage Vane
,” ASME Paper No. GT2003-38252.
11.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2005, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
J. Turbomach.
0889-504X,
127
, pp.
297
305
.
12.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
, 2000, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
J. Turbomach.
0889-504X,
122
, pp.
651
658
.
13.
Ranson
,
W.
,
Thole
,
K. A.
, and
Cunha
,
F.
, 2005, “
Adiabatic Effectiveness Measurements and Predictions of Leakage Flows Along a Blade Endwall
,”
J. Turbomach.
0889-504X,
127
, pp.
609
618
.
14.
Yamao
,
H.
,
Aoki
,
K.
,
Takeishi
,
K.
, and
Takeda
,
K.
, 1987, “
An Experimental Study for Endwall Cooling Design of Turbine Vanes
,” IGTC-1987, Tokyo, Japan.
15.
Piggush
,
J. D.
, and
Simon
,
T. W.
, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage, and Assembly Features
,” ASME Paper No. GT2005-68340.
16.
Piggush
,
J. D.
, and
Simon
,
T. W.
, 2005, “
Flow Measurements in a First Stage Nozzle Cascade Having Leakage and Assembly Features: Effects of Endwall Steps and Leakage on Aerodynamic Losses
,” ASME Paper No. IMCE2005-83032.
17.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
, “
The Interaction of Turbine Inter-Platform Leakage Flow With the Mainstream Flow
,” ASME Paper No. GT2005-68151.
18.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2006, “
Effects of Mid-Passage Gap, Endwall Misalignment and Roughness on Endwall Film-Cooling
,”
J. Turbomach.
0889-504X,
128
, pp.
62
70
.
19.
de la Rosa
,
Blanco E.
,
Hodson
,
H. P.
, and
Vazquez
,
R.
, “
Effect of Upstream Platform Geometry on the Endwall Flows of a Turbine Cascade
,” ASME Paper No. GT2005-68938.
20.
Radomsky
,
R.
, and
Thole
,
K. A.
, 2002, “
Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels
,”
J. Turbomach.
0889-504X,
124
, pp.
107
118
.
21.
Sandpaper—Coated Abrasives
,” www.sizes.com/tools/sandpaper.htmwww.sizes.com/tools/sandpaper.htm (11 August 2004).
22.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
J. Turbomach.
0889-504X,
123
, pp.
739
748
.
23.
Modest
,
M. F.
, 2003,
Radiative Heat Transfer
,
2nd ed.
, pp.
743
758
.
24.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
, 2000, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil With Strong Curvature and Pressure Gradients
,”
J. Turbomach.
0889-504X,
123
, pp.
231
237
.
25.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
26.
Kang
,
M.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
J. Turbomach.
0889-504X,
121
(
3
), pp.
558
568
.
You do not currently have access to this content.