The stable operating range of axial compressors is limited by the onset of rotating stall and surge. These flow conditions endanger the reliability of operation and definitely have to be avoided in compressors of gas turbines. However, there is still a need to improve the physical understanding of these flow phenomena to prevent them while utilizing the maximum available working potential of the compressor. This paper discusses detailed experimental investigations of the rotating stall onset with the main emphasis on the aerodynamic blade excitation in the Dresden four-stage low-speed research compressor. The stall inception, which is triggered by modal waves, as well as the main flow features during rotating stall operation are discussed. To investigate the unsteady pressure distributions, both the rotor and the stator blades of the first stage were equipped with piezoresistive pressure transducers. Based on these measurements the unsteady blade pressure forces are calculated. Time-resolved results at the stability limit as well as during rotating stall are presented. For all operating conditions rotor–stator interactions play an important role on the blade force excitation. Furthermore the role of the inertia driven momentum exchange at the stall cell boundaries on the aerodynamic blade force excitation is pointed out.

1.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
, 1990, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
116
125
.
2.
Day
,
I. J.
,
Breuer
,
T.
,
Escuret
,
J.
,
Cherett
,
M.
, and
Wilson
,
A.
, 1999, “
Stall Inception and the Prospects for Active Control in Four High-Speed Compressors
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
18
27
.
3.
Höss
,
B.
,
Leinhos
,
D.
, and
Fottner
,
L.
, 2000, “
Stall Inception in the Compressor System of a Turbofan Engine
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
32
44
.
4.
Camp
,
T. R.
, and
Day
,
I. J.
, 1998, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
393
401
.
5.
Mailach
,
R.
, 2001, “
Experimentelle Untersuchung von Strömungsinstabilitäten im Betriebsbereich zwischen Auslegungspunkt und Stabilitätsgrenze eines vierstufigen Niedergeschwindigkeits-Axialverdichters
,” Doctoral thesis, TU Dresden, Dresden, Germany.
6.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
, 2001, “
Rotating Instabilities in an Axial Compressor Originating from the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
453
463
.
7.
Mailach
,
R.
, and
Vogeler
,
K.
, 2004, “
Rotor-Stator Interactions in a Four-Stage Low-Speed Axial Compressor, Part I: Unsteady Profile Pressures and the Effect of Clocking
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
507
518
.
8.
Mailach
,
R.
,
Müller
,
L.
, and
Vogeler
,
K.
, 2004, “
Rotor-Stator Interactions in a Four-Stage Low-Speed Axial Compressor, Part II: Unsteady Aerodynamic Forces of Rotor and Stator Blades
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
519
526
.
9.
Sauer
,
H.
,
Bernstein
,
W.
,
Bernhard
,
H.
,
Biesinger
,
T.
,
Boos
,
P.
, and
Möckel
,
H.
, 1996, “
Konstruktion, Fertigung und Aufbau eines Verdichterprüfstandes und Aufnahme des Versuchsbetriebes an einem Niedergeschwindigkeits-Axialverdichter in Dresden
,” Abschlußbericht zum BMBF-Vorhaben 0326758A, Dresden, Germany.
10.
Müller
,
R.
,
Mailach
,
R.
, and
Lehmann
,
I.
, 1997, “
The Design and Construction of a Four-Stage Low-Speed Research Compressor
,”
Proceedings of the IMP ’97 Conference on Modelling and Design in Fluid-Flow Machinery
,
J.
Badur
,
Z.
Bilicki
,
J.
Mikielewicz
, and
E.
Sliwicki
, eds., Gdansk, Poland, Nov. 18–21, pp.
523
530
.
11.
Boos
,
P.
,
Möckel
,
H.
,
Henne
,
J. M.
, and
Selmeier
,
R.
, 1998, “
Flow Measurement in a Multistage Large Scale Low Speed Axial Flow Research Compressor
,” ASME Paper No. 98-GT-432.
12.
Jia
,
H.
,
Vogeler
,
K.
,
Müller
,
L.
, and
Mailach
,
R.
, 2006, “
Numerical Investigation of Rotor-Stator-Interactions in a 1.5-Stage Low-Speed Axial Compressor
,”
Conference Proceedings on Modelling Fluid Flow (CMFF’06), Budapest, Hungary
, Sept. 6–9.
13.
Palomba
,
C.
,
Puddu
,
P.
, and
Nurzia
,
F.
, 2003, “
Experimental Investigation of Rotating Stall Cell Structure Variation During Recovery
,”
Proceedings of the 5th European Conference on Turbomachinery—Fluid Dynamics and Thermodynamics
,
M.
Stastny
,
G. H.
Sieverding
, and
G.
Bois
, eds., Prague, Czech Republic, March 18–21, pp.
187
195
.
14.
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
, 1982, “
A Simple Model for Compressor Stall Cell Propagation
,”
J. Eng. Power
0022-0825,
104
, pp.
170
176
.
15.
Gyarmathy
,
G.
, 1996, “
Impeller-Diffuser Momentum Exchange During Rotating Stall
,” ASME Paper No. 96-WA/PID-6.
16.
Saxer-Felici
,
H. M.
,
Saxer
,
A. P.
,
Inderbitzin
,
A.
, and
Gyarmathy
,
G.
, 1999, “
Prediction and Measurement of Rotating Stall Cells in an Axial Compressor
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
365
375
.
You do not currently have access to this content.