A new correlation-based transition model has been developed, which is based strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution. The model is based on two transport equations, one for intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models) but form a framework for the implementation of correlation-based models into general-purpose CFD methods. Part I (this part) of this paper gives a detailed description of the mathematical formulation of the model and some of the basic test cases used for model validation, including a two-dimensional turbine blade. Part II (Langtry, R. B., Menter, F. R., Likki, S. R., Suzen, Y. B., Huang, P. G., and Völker, S., 2006, ASME J. Turbomach., 128(3), pp. 423–434) of the paper details a significant number of test cases that have been used to validate the transition model for turbomachinery and aerodynamic applications. The authors believe that the current formulation is a significant step forward in engineering transition modeling, as it allows the combination of correlation-based transition models with general purpose CFD codes.

1.
Savill
,
A. M.
, 1993, “
Some Recent Progress in the Turbulence Modelling of By-pass Transition
,”
Near-Wall Turbulent Flows
,
R. M. C.
So
,
C. G.
Speziale
, and
B. E.
Launder
, eds.
Elsevier
,
New York
, p.
829
.
2.
Savill
,
A. M.
, 1996, “
One-Point Closures Applied to Transition
,”
Turbulence and Transition Modelling
,
M.
Hallbäck
et al.
, eds.,
Kluwer
,
Dordrecht
, pp.
233
268
.
3.
Suzen
,
Y. B.
,
Huang
,
P. G.
,
Hultgren
,
L. S.
, and
Ashpis
,
D. E.
, 2003, “
Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation
,”
ASME J. Turbomach.
0889-504X,
125
(
3
), pp.
455
464
.
4.
Wilcox
,
D. C.
, 1993,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
5.
Langtry
,
R. B.
, and
Sjolander
,
S. A.
, 2002, “
Prediction of Transition for Attached and Separated Shear Layers in Turbomachinery
,” AIAA Paper No. AIAA-2002–3643.
6.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
, 1980, “
Natural Transition of Boundary Layers-The Effects of Turbulence, Pressure Gradient, and Flow History
,”
J. Mech. Eng. Sci.
0022-2542,
22
(
5
), pp.
213
228
.
7.
Suzen
,
Y. B.
,
Xiong
,
G.
, and
Huang
,
P. G.
, 2000, “
Predictions of Transitional Flows in Low-Pressure Turbines Using an Intermittency Transport Equation
,” AIAA Paper No. AIAA-2000–2654.
8.
Steelant
,
J.
, and
Dick
,
E.
, 2001, “
Modeling of Laminar-Turbulent Transition for High Freestream Turbulence
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
22
30
.
9.
Menter
,
F. R.
,
Esch
,
T.
, and
Kubacki
,
S.
, 2002, “
Transition Modelling Based on Local Variables
,”
5th International Symposium on Turbulence Modeling and Measurements
, Mallorca, Spain.
10.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
11.
Van Driest
,
E. R.
, and
Blumer
,
C. B.
, 1963, “
Boundary Layer Transition: Freestream Turbulence and Pressure Gradient Effects
,”
AIAA J.
0001-1452,
1
(
6
), pp.
1303
1306
.
12.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
;
Menter
,
F. R.
,2002,
AIAA J.
0001-1452,
40
(
2
) pp.
254
266
.
13.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
, 2006, “
A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications
,”
ASME J. Turbomach.
0889-504X,
128
(
3
), pp.
423
434
.
14.
Drela
,
M.
, 1995, “
MISES Implementation of Modified Abu-Ghannam and Shaw Transition Criteria
,” MIT Aero-Astro.
15.
Fashifar
,
A.
, and
Johnson
,
M. W.
, 1992, “
An Improved Boundary Layer Transition Correlation
,” ASME Paper No. ASME-92-GT-245.
16.
Schubauer
,
G. B.
, and
Skramstad
,
H. K.
, 1948, “
Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate
,” NACA Report No. 909.
17.
Sinclair
,
C.
, and
Wells
,
C. S.
, Jr.
, 1967, “
Effects of Freestream Turbulence on Boundary-Layer Transition
,”
AIAA J.
0001-1452,
5
(
1
), pp.
172
174
.
18.
Schubauer
,
G. B.
, and
Klebanoff
,
P. S.
, 1955, “
Contribution on the Mechanics of Boundary Layer Transition
,” NACA TN 3489.
19.
Ubaldi
,
M.
,
Zunino
,
P.
,
Campora
,
U.
, and
Ghiglione
,
A.
, 1996, “
Detailed Velocity and Turbulence Measurements of the Profile Boundary Layer in a Large Scale Turbine Cascade
,” ASME Paper No. ASME-96-GT-42.
You do not currently have access to this content.