A three-dimensional hybrid structured-unstructured Reynolds-averaged Navier-Stokes (RANS) solver has been developed to simulate flows in complex turbomachinery geometries. It is built by coupling an existing structured computational fluid dynamics (CFD) solver with a newly developed unstructured-grid module via a conservative hybrid-grid interfacing algorithm, so that it can get benefits from the both structured and unstructured grids. The unstructured-grid module has been developed with consistent numerical algorithms, data structure, user interface and parallelization to those of the structured one. The numerical features of the hybrid RANS solver are its second-order accurate upwind scheme in space, its SGS implicit formulation of time integration, and its accurate modeling of steady/unsteady boundary conditions for multistage turbomachinery flows. The hybrid-grid interfacing algorithm is essentially an extension of the conservative zonal approach that has been previously applied on the mismatched zonal interface of the structured grids, and it is fully conservative and also second-order accurate. Due to the mismatched grids allowed at the block interface, users would have great flexibility to build the hybrid grids even with different structured and unstructured grid generators. The performance of the hybrid RANS solver is assessed with a variety of validation and application examples, through which the hybrid RANS solver has been demonstrated to be able to cope with the flows in complex turbomachinery geometries and to be promising for the future industrial applications.

1.
Dawes
,
W. N.
, 1992 “
The Simulation of Three-Dimensional Viscous Flow in Turbomachinery Geometries Using a Solution-Adaptive Unstructured Mesh Methodology
”,
ASME J. Turbomach.
0889-504X
114
, pp.
528
537
.
2.
Contreras
,
J.
, et al.
, 2002, “
Semi-Unstructured Grid Methods for Turbomachinery Applications
,” ASME Paper No. GT-2002-30572.
3.
Sheng
,
C.
, 2004, “
Full Annulus Simulation of a High-Speed Centrifugal Compressor Using an Unstructured RANS Flow Solver
,” ASME Paper No. GT2004-53657.
4.
Soetrisno
,
M.
,
Imlay
,
S. T.
, and
Roberts
,
D. W.
, 1994, “
A Zonal Implicit Procedure for Hybrid Structured-Unstructured Grids
,” AIAA Paper No. AIAA-94-0645.
5.
Nuernberger
,
D.
,
Eulitz
,
F.
,
Schmitt
,
S.
, and
Zachcial
,
A.
, 2001, “
Recent Progress in the Numerical Simulation of Unsteady Viscous Multistage Turbomachinery Flows
,” ISABE-2001-1081.
6.
Eulitz
,
F.
,
Engel
,
K.
,
Nuernberger
,
D.
,
Schmitt
,
S.
, and
Yamamoto
,
K.
, 1998, “
On Recent Advances of a Parallel Time-Advanced Navier-Stokes Solver for Unsteady Turbomachinery Flow
,”
Proceedings of Computational Fluid Dynamics ’98, Proceedings, ECCOMAS
,
K. D.
Papailiou
,
D.
Tsachalis
,
J.
Periaux
,
C.
Hirsch
, and
M.
Pandolfi
, eds.,
John Wiley & Sons
, New York, Vol.
1
, pp.
252
258
.
7.
Engel
,
K.
,
Eulitz
,
F.
,
Pokorny
,
S.
, and
Faden
,
M.
, 1996, “
3D Navier-Stokes Solver for the Simulation of the Unsteady Turbomachinery Flow on a Massively Parallel Hardware Architecture
,”
Notes on Numerical Fluid Dynamics
, Vieweg,
52
, pp.
1
17
.
8.
Yang
,
H.
,
Nuernberger
,
D.
, and
Weber
,
A.
, 2002, “
A Conservative Zonal Approach with Applications to Unsteady Turbomachinery Flows
,” Deutscher Luft- und Raumfahrt Kongress 2002, DGLR-JT2002-073, Sept. 23–26, Stuttgart, Germany.
9.
Yang
,
H.
,
Nuernberger
,
D.
,
Nicke
,
E.
, and
Weber
,
A.
, 2003, “
Numerical Investigation of Casing Treatment Mechanisms With Conservative Mixed-Cell Approach
,” Atlanta, ASME Paper No. GT2003-38483.
10.
Spalart
,
P.
, and
Allmaras
,
S.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. AIAA-92-0439.
11.
Wilcox
,
D. C.
, 1998, “
Turbulence Modelling for CFD
,” 2nd ed.,
DCW Industries
, Anaheim, CA.
12.
Drela
,
M.
, 1995, “
MISES Implementation of Modified Abu-Ghannam/Shaw Criterion (Revision)
,” MIT Aero-Astro.
13.
Giles
,
M. B.
, 1988, “
Non-Reflecting Boundary Conditions for the Euler Equations
,” CFDL-TR-88-1, CFD Lab., MIT.
14.
Acton
,
E.
, and
Cargill
,
M.
, 1988, “
Non-Reflecting Boundary Conditions for Computations of Unsteady Turbomachinery Flow
,”
Proceedings, 4th Int. Symp. Unsteady Aerodynamics and Aeroelasticity of Turbomachines and Propellers
, pp.
211
228
.
15.
Poirier
,
D.
,
Allmaras
,
S. R.
,
McCarthy
,
D. R.
, et al.
, 1998, “
The CGNS System – Standard for Aerodynamic Data
,” AIAA Paper No. AIAA-98-3007.
16.
Roe
,
P. L.
, 1981, “
Approximate Riemann Solvers, Parameter Vectors and Difference Schemes
,”
J. Comput. Phys.
0021-9991,
43
, pp.
357
372
.
17.
Barth
,
T. J.
, and
Jesperson
,
D. C.
, 1989, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,” AIAA Paper No. AIAA-89-0366.
18.
Venkatakrishnan
,
V.
, 1995, “
Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters
,”
J. Comput. Phys.
0021-9991,
118
, pp.
120
130
.
19.
Nuernberger
,
D.
,
Eulitz
,
F.
, and
Schmitt
,
S.
, 1999, “
Effiziente Berechnung der instationären Strömung in Turbomaschinen mittels impliziter Zeitintegration
,”
Proc. DGLR-Jahrestagung
, Berlin (in German).
20.
Yoon
,
S.
, and
Jameson
,
A.
, 1988, “
Lower-Upper Symmetric-Gauss-Seidel Method for the Euler and Navier-Stokes Equations
,”
AIAA J.
0001-1452,
26
, pp.
1025
1026
.
21.
Spalding
,
D. B.
, 1961, “
A Single Formula for the Law of the Wall
,”
ASME J. Appl. Mech.
0021-8936,
28
, pp.
455
457
.
22.
Newman
,
W. M.
, and
Sproull
,
R. F.
, 1979,
Principles of Interactive Computer Graphics
,
McGraw-Hill
, New York, pp.
69
72
.
23.
White
,
F. M.
, 1991,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill
, New York, pp.
415
435
;
White
,
F. M.
, 1991,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill
, New York, pp.
9
12
.
24.
Ni
,
R. H.
, 1982, “
A Multiple-Grid Scheme for Solving the Euler Equations
,”
AIAA J.
0001-1452,
20
, pp.
1565
1571
.
25.
Hoynacki
,
A.
, 1999, “
Einfluß von instationärer Strömung und Turbulenz auf die Grenzschichten und auf die Druckverteilung von Beschaufelungen moderner mehrstufiger Axialverdichter
,” final report of FVV, Heft 679 (in German).
26.
Acton
,
P.
, and
Fottner
,
L.
, 1997, “
Investigation of the Boundary-Layer Development on a Highly Loaded Low-Pressure Turbine Cascade under the Influence of Instationary Inlet Flow Conditions
,”
Proceedings 8th ISUAAT
.
27.
Acton
,
P.
, 1998, “
Untersuchung des Grenzschichtum-schlages an einem hochbelasteten Turbinengitter unter inhomogenen und instationären Zuströmbedingungen
,” dissertation, Universität BW München (in German).
28.
Eulitz
,
F.
, 1999, “
A RANS Method for the Time-Accurate Simulation of Wake-Induced Boundary-Layer Transition in Turbine Flows
,” ISABE 99-7275.
You do not currently have access to this content.