The unsteady pressure over the suction surface of a modern low-pressure (LP) turbine blade subjected to periodically passing wakes from a moving bar wake generator is described. The results presented are a part of detailed large-eddy simulation (LES) following earlier experiments over the T106 profile for a Reynolds number of (based on the chord and exit velocity) and the cascade pitch to chord ratio of 0.8. The present LES uses coupled simulations of cylinder for wake, providing four-dimensional inflow conditions for successor simulations of wake interactions with the blade. The three-dimensional, time-dependent, incompressible Navier-Stokes equations in fully covariant form are solved with grid points for the cascade and grid points for the cylinder using a symmetry-preserving finite difference scheme of second-order spatial and temporal accuracy. A separation bubble on the suction surface of the blade was found to form under the steady state condition. Pressure fluctuations of large amplitude appear on the suction surface as the wake passes over the separation region. Enhanced receptivity of perturbations associated with the inflexional velocity profile is the cause of instability and coherent vortices appear over the rear half of the suction surface by the rollup of shear layer via Kelvin-Helmholtz (KH) mechanism. Once these vortices are formed, the steady-flow separation changes remarkably. These coherent structures embedded in the boundary layer amplify before breakdown while traveling downstream with a convective speed of about 37% of the local free-stream speed. The vortices play an important role in the generation of turbulence and thus to decide the transitional length, which becomes time dependent. The source of the pressure fluctuations on the rear part of the suction surface is also identified as the formation of these coherent structures. When compared with experiments, it reveals that LES is worth pursuing as an understanding of the eddy motions and interactions is of vital importance for the problem.
Skip Nav Destination
e-mail: subra@iitk.ac.in
Article navigation
April 2006
Technical Papers
Large-Eddy Simulation of Unsteady Surface Pressure Over a Low-Pressure Turbine Blade due to Interactions of Passing Wakes and Inflexional Boundary Layer
S. Sarkar,
S. Sarkar
Department of Mechanical Engineering,
e-mail: subra@iitk.ac.in
Indian Institute of Technology
, Kanpur 208016, India
Search for other works by this author on:
Peter R. Voke
Peter R. Voke
Search for other works by this author on:
S. Sarkar
Department of Mechanical Engineering,
Indian Institute of Technology
, Kanpur 208016, Indiae-mail: subra@iitk.ac.in
Peter R. Voke
J. Turbomach. Apr 2006, 128(2): 221-231 (11 pages)
Published Online: February 1, 2005
Article history
Received:
October 1, 2004
Revised:
February 1, 2005
Citation
Sarkar, S., and Voke, P. R. (February 1, 2005). "Large-Eddy Simulation of Unsteady Surface Pressure Over a Low-Pressure Turbine Blade due to Interactions of Passing Wakes and Inflexional Boundary Layer." ASME. J. Turbomach. April 2006; 128(2): 221–231. https://doi.org/10.1115/1.2137741
Download citation file:
Get Email Alerts
Evaluating Thin-Film Thermocouple Performance on Additively Manufactured Turbine Airfoils
J. Turbomach (July 2025)
Thermohydraulic Performance and Flow Structures of Diamond Pyramid Arrays
J. Turbomach (July 2025)
Related Articles
Separated Flow Transition on an LP Turbine Blade With Pulsed Flow Control
J. Turbomach (April,2008)
Combined Effects of Surface Trips and Unsteady Wakes on the Boundary Layer Development of an Ultra-High-Lift LP Turbine Blade
J. Turbomach (July,2005)
Related Proceedings Papers
Related Chapters
Introduction
Design and Analysis of Centrifugal Compressors
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis