This study evaluates the impact of typical cooling hole shape variations on the thermal performance of fan-shaped film holes. A comprehensive set of experimental test cases featuring 16 different film-cooling configurations with different hole shapes have been investigated. The shape variations investigated include hole inlet-to-outlet area ratio, hole coverage ratio, hole pitch ratio, hole length, and hole orientation (compound) angle. Flow conditions applied cover a wide range of film blowing ratios M=0.5 to 2.5 at an engine-representative density ratio DR=1.7. An infrared thermography data acquisition system is used for highly accurate and spatially resolved surface temperature mappings. Accurate local temperature data are achieved by an in situ calibration procedure with the help of thermocouples embedded in the test plate. Detailed film-cooling effectiveness distributions and discharge coefficients are used for evaluating the thermal performance of a row of fan-shaped film holes. An extensive variation of the main geometrical parameters describing a fan-shaped film-cooling hole is done to cover a wide range of typical film-cooling applications in current gas turbine engines. Within the range investigated, laterally averaged film-cooling effectiveness was found to show only limited sensitivity from variations of the hole geometry parameters. This offers the potential to tailor the hole geometry according to needs beyond pure cooling performance, e.g., manufacturing facilitations.

1.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
, 1974, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
595
607
.
2.
Makki
,
Y. H.
, and
Jakubowski
,
G.
, 1986, “
An Experimental Study of Film Cooling From Diffused Trapezoidal Shaped Holes
,” AIAA paper no 86-1326.
3.
Yu
,
Y.
,
Yen
,
C-H.
,
Shih
,
T. I-P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
1999, “
Film Cooling Effectiveness And Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,” ASME paper No.-99-GT-34.
4.
Dittmar
,
J.
,
Gritsch
,
M.
,
Schulz
,
A.
,
Kim
,
S.
and
Wittig
,
S.
, 1999, “
Advanced Cooling of Gas Turbine Blades: Effect of Hole Geometry and Film Cooling Performance
,”
8th Colloquium on Turbomachinery
,
TMPRC Seoul National University
, Seoul, Korea, June 27th–July 3rd.
5.
Dittmar
,
J.
,
Schulz
,
A.
and
Wittig
,
S.
, 2003, “
Assessment of Various Film-Cooling Configurations Including Shaped and Compound Angle Holes Based on Large-Scale Experiments
”,
ASME J. Turbomach.
0889-504X,
125
, pp.
57
64
.
6.
Saumweber
,
Ch.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2004, “
Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
237
246
.
7.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
549
556
.
8.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
327
336
.
9.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2000, “
Film-Cooling Holes with Expanded Exits: Near Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
0142-727X,”
21
, pp.
146
153
.
10.
Gritsch
,
M.
,
Saumweber
,
C.
Schulz
,
A.
Wittig
,
S.
and
Sharp
,
E.
, 2000, “
Effect of Internal Coolant Crossflow Orientation on the Discharge Coefficient of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
146
153
.
11.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003, “
Effect of Internal Crossflow on the Effectiveness of Shaped Film-cooling Holes
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
547
554
.
12.
Saumweber
,
Ch.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003 “
Free-StreamTurbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
65
73
.
13.
Reiss
,
H.
, and
Bölcs
,
A.
, 2000, “
Experimental Study of Showerhead Cooling on a Cylinder Comparing Several Configurations Using Cylindrical and Shaped Holes
,”
ASME J. Turbomach.
0889-504X
122
, pp.
161
169
.
14.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
, (2000), “
Film Cooling from Shaped Holes
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
224
232
.
15.
Kohli
,
A.
, and
Bogard
,
D.
, 1999, “
Effects of Hole Shape on Film Cooling with Large Angle Injection
,” ASME Paper No. 99-GT-165.
16.
Lutum
,
E.
,
von Wolfersdorf
,
J.
,
Weigand
,
B.
, and
Semmler
,
K.
, 2000, “
Film Cooling on a Convex Surface With Zero Pressure Gradient Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
2973
2987
.
17.
Giebert
,
D.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1997, “
Film-Cooling From Holes With Expanded Exits: A Comparison of Computational Results With Experiments
,” ASME Paper No. 97-GT-163.
18.
Hyams
,
D. G.
, and
Leylek
,
J. H.
, 1997, “
A Detailed Analysis of Film Cooling Physics, Part III: Streamwise Injection with Shaped Holes
,” ASME Paper No. 97-GT-271.
19.
Kohli
,
A.
, and
Thole
,
K. A.
, 1998, “
Entrance Effects on Diffused Film-Cooling Holes
,” ASME Paper No. 98-GT-402.
20.
Metzger
,
D. E.
,
Carper
,
H. J.
, and
Swank
,
L. R.
, 1968, “
Heat Transfer With Film Cooling Near Non-Tangential Injection Slots
,”
ASME J. Eng. Power
0022-0825,
90
, pp.
157
163
.
21.
Gritsch
,
M.
,
Baldauf
,
S.
,
Martiny
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1999, “
The Superposition Approach to Local Heat Transfer Coefficients in High Density Ratio Film Cooling Flows
,” ASME Paper No. 99-GT-168.
22.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
800
806
.
23.
Martiny
,
M.
,
Schiele
,
R.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1996, “
In Situ Calibration for Quantitative Infrared Thermography
,”
Proceedings of the 3rd International Conference on Quantitative Infrared Thermography (QIRT '96)
,
Stuttgart
, Germany, September 2–5.
24.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
25.
Hay
,
N.
, and
Lampard
,
D.
, 1995, “
The Discharge Coefficient of Flared Film Cooling Holes
,” ASME Paper No. 95-GT-15.
26.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
557
563
.
27.
Lutum
,
E.
, and
Johnson
,
B.
, 1999, “
Influence of the Hole Length-to-Diameter Ratio on Film Cooling with Cylindrical Holes
”,
ASME J. Turbomach.
0889-504X
121
, pp.
209
216
.
28.
Cho
,
H.
,
Rhee
,
D.
, and
Kim
,
B.
, 1999, “
Film Cooling Effectiveness and Heat/Mass Transfer Coefficient Measurements around a Conical-Shaped Hole with Compound Angle Injection
,” ASME Paper No. 99-GT-38.
29.
Brittingham
,
R. A.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film Cooling Physics, Part IV: Compound-Angle Injection With Shaped Holes
,”
ASME J. Turbomach.
0889-504X
122
, pp.
133
145
.
30.
Yu
,
Y.
,
Yen
,
C-H.
,
Shih
,
T. I-P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
, 1999, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distribution Around Diffusion Shaped Holes
,” ASME Paper No. 99-GT-34.
You do not currently have access to this content.