This paper presents time-resolved flow field measurements at the exit of the first rotor blade row of a two stage shrouded axial turbine. The observed unsteady interaction mechanism between the secondary flow vortices, the rotor wake and the adjacent blading at the exit plane of the first turbine stage is of prime interest and analyzed in detail. The results indicate that the unsteady secondary flows are primarily dominated by the rotor hub passage vortex and the shed secondary flow field from the upstream stator blade row. The analysis of the results revealed a roll-up mechanism of the rotor wake layer into the rotor indigenous passage vortex close to the hub endwall. This interesting mechanism is described in a flow schematic within this paper. In a second measurement campaign the first stator blade row is clocked by half a blade pitch relative to the second stator in order to shift the relative position of both stator indigenous secondary flow fields. The comparison of the time-resolved data for both clocking cases showed a surprising result. The steady flow profiles for both cases are nearly identical. The analysis of the probe pressure signal indicates a high level of unsteadiness that is due to the periodic occurrence of the shed first stator secondary flow field.

1.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,” The 1993 IGTI Scholar Lecture.
J. Turbomach.
0889-504X,
115
, pp.
621
656
.
2.
Sharma
,
O. P.
,
Butler
,
T. L.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
, 1985, “
Three-Dimensional Unsteady Flow in an Axial Flow Turbine
,”
AIAA J.
0001-1452,
1
, pp.
29
38
.
3.
Miller
,
R. J.
,
Moss
,
R. W.
, and
Ainsworth
,
R. W.
, 2003, “
The Development of Turbine Exit Flow in a Swan-Necked Inter-Stage Diffuser
,” ASME GT-2003-38174, Atlanta, Georgia.
4.
Hodson
,
H. P.
, 1985, “
Measurements of Wake Generated Unsteadiness in the Rotor Passages of Axial Flow Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
337
344
.
5.
Binder
,
A.
,
Förster
,
W.
,
Mach
,
K.
, and
Rogge
,
H.
, 1986, “
Unsteady Flow Interaction Caused by the Stator Secondary Vortices in a Turbine Rotor
,” ASME 1986-GT-302.
6.
Boletis
,
E.
, and
Sieverding
,
C. H.
, 1991, “
Experimental Study of the Three-Dimensional Flow Field in a Turbine Stator Preceded by a Full Stage
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
1
9
.
7.
Chaluvadi
,
V. S. P.
,
Kalfas
,
A. I.
,
Hodson
,
H. P.
,
Ohyama
,
H.
, and
Watanabe
,
E.
, 2003, “
Blade Row Interaction in a High Pressure Steam Turbine
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
14
24
.
8.
Behr
,
T.
,
Porreca
,
L.
,
Mokulys
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2004, “
Multistage Aspects and Unsteady Effects of Stator and Rotor Clocking in an Axial Turbine with Low Aspect Ratio Blading
,” ASME GT-2004-53612, Vienna, Austria.
9.
Chaluvadi
,
V. S. P.
,
Kalfas
,
A. I.
, and
Hodson
,
H. P.
, 2003, “
Generating a Vortex to Study Vortex Interaction in an Axial Flow Turbine
,”
5th European Conference on Turbomachinery 2003
, Conference Proceeding, pp.
1029
1038
.
10.
Kupferschmied
,
P.
,
Köppel
,
P.
,
Gizzi
,
W. P.
, and
Gyarmathy
,
G.
, 2000, “
Time-Resolved Flow Measurements with Fast-Response Aerodynamic Probes in Turbomachines
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
1036
1054
.
11.
Ruck
,
G.
, 1989, “
Ein Verfahren zur instationären Geschwindigkeits- und Turbulenzmessung mit einer pneumatisch messenden Keilsonde
,”
Mitteilung des Instituts No. 33
, University of Stuttgart, Germany.
12.
Koeppel
,
P.
, 2000, “
Instationäre Strömung in Turbomaschinen: Analyse Zeitabhängiger Sondenmessungen
,” Ph.D thesis Nr. 13500, ETH Zurich, Switzerland.
13.
Schlienger
,
J.
, 2003, “
Evolution of Unsteady Secondary Flows in a Multistage Shrouded Axial Turbine
,” Ph.D. thesis, No. 15230, ETH Zurich, Switzerland.
14.
Schlienger
,
J.
,
Pfau
,
A.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
, 2003, “
Effects of Labyrinth Seal Variation on Multistage Axial Turbine Flow
,” ASME Atlanta 2003-GT-38270.
15.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
, 1977, “
Three Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
99
, pp.
21
28
.
16.
Hawthorne
,
W. R.
, 1955, “
Rotational Flow Through Cascades
,”
Q. J. Mech. Appl. Math.
0033-5614,
8
, Pt. 3, Sept., pp.
266
279
.
17.
Goldstein
,
R. J.
, and
Spores
,
R. A.
, 1988, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
862
869
.
You do not currently have access to this content.