The heat transfer and pressure drop characteristics of latticework coolant blade passages have been investigated experimentally under conditions of rotation. Stationary studies with the latticework configuration have shown potential advantages including spatially-uniform streamwise distributions of the heat transfer coefficient, greater blade strength, and enhancement levels comparable to conventional rib turbulators. In the present study, a latticework coolant passage, with orthogonal-ribs, is studied in a rotating heat transfer test-rig for a range of Reynolds numbers (Res), Rotation numbers (Ros), and density ratios. Measurements indicate that for Res20,000, the latticework coolant passage provides very uniform streamwise distributions of the Nusselt number (Nus) with enhancement levels (relative to smooth-channel values) in the range of 2.0–2.5. No significant dependence of Nus on Ros and density ratio is observed except at lower Res values (10,000). Nusselt numbers are highest immediately downstream of a turn indicating that bend-effects play a major role in enhancing heat transfer. Friction factors are relatively insensitive to Ros, and thermal performance factors at higher Res values appear to be comparable to those obtained with conventional rib-turbulators. The present study indicates that latticework cooling geometry can provide comparable heat transfer enhancements and thermal performance factors as conventional rib-turbulators, with potential benefits of streamwise uniformity in the heat transfer coefficients and added blade strength.

1.
Han
,
J. C.
, and
Dutta
,
S.
, 2001, “
Recent Developments in Turbine Blade Internal Cooling
,” Heat Transfer in Gas Turbine Systems,
Ann. N.Y. Acad. Sci.
0077-8923
934
, pp.
162
178
.
2.
Webb
,
R. L.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
, 1971, “
Heat Transfer and Friction in Tubes With Repeated-Rib Roughness
,”
Int. J. Heat Mass Transfer
0017-9310
14
, pp.
601
617
.
3.
Abuaf
,
N.
, and
Kercher
,
D. M.
, 1994, “
Heat Transfer and Turbulence in a Turbulated Blade Cooling Circuit
,”
J. Turbomach.
0889-504X
116
, pp.
169
177
.
4.
Acharya
,
S.
,
Eliades
,
E.
, and
Nikitopoulos
,
D.
, 2001, “
Heat Transfer Enhancements in Rotating Two-Pass Coolant Channels With Profiled Ribs—Part I: Average Results
,”
J. Turbomach.
0889-504X
123
, pp.
97
106
.
5.
Nikitopoulos
,
D.
,
Eliades
,
V.
, and
Acharya
,
S.
, 2001, “
Heat Transfer Enhancements in Rotating Two-Pass Coolant Channels With Profiled Ribs—Part II: Detailed Results for Two Profile Configurations
,”
J. Turbomach.
0889-504X
123
, pp.
107
114
.
6.
Glezer
,
B.
,
Moon
,
H. K.
,
Kerrebrock
,
J.
,
Bons
,
J.
, and
Guenette
,
G.
, 1998, “
Heat Transfer in a Rotating Radial Channel With Swirling Internal Flow
,” ASME Paper No. 98-GT-214.
7.
Hedlund
,
C. R.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
, 1998, “
Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade Internal Cooling
,” ASME Paper No. 98-GT-466.
8.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
, 2000, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,” ASME Turbo Expo, 2000, Munich.
9.
Zhou
,
F.
, and
Acharya
,
S.
, 2001, “
Flow and Heat Transfer in Dimpled Two-Pass Channel
,” Heat Transfer in Gas Turbine Systems,
Ann. N.Y. Acad. Sci.
0077-8923
934
, pp.
424
431
.
10.
Hibbs
,
R.
,
Acharya
,
S.
,
Chen
,
Y.
,
Nikitopoulos
,
D.
, and
Myrum
,
T.
, 1998, “
Heat Transfer in a Two-Pass Internally Ribbed Turbine Blade Coolant Channel With Cylindrical Vortex Generators
,”
J. Turbomach.
0889-504X
120
, pp.
724
734
.
11.
Hibbs
,
R.
,
Acharya
,
S.
,
Chen
,
Y.
, and
Nikitopoulos
,
D. E.
, 2000, “
Mass∕Heat Transfer in a Ribbed Coolant Passage With Cylindrical Vortex Generators: The Effect of Generator-Rib Spacing
,”
J. Heat Transfer
0022-1481
122
, pp.
641
652
.
12.
Bunker
,
R. S.
, 2004, “
Latticework (Vortex) Cooling Effectiveness—Part I: Stationary Channel Experiments
,” ASME Paper No. GT-2004-54157.
13.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
, 1991, “
Heat Transfer in Rotating Passages With Smooth Walls and Radial Outward Flow
,”
J. Turbomach.
0889-504X
113
, pp.
42
51
.
14.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
, 1991, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
J. Turbomach.
0889-504X
113
, pp.
321
330
.
15.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
, 1992, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
J. Turbomach.
0889-504X
114
, pp.
847
857
.
16.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
, 1994, “
Heat Transfer in Rotating Serpentine Passages With Trips Skewed to the Flow
,”
J. Turbomach.
0889-504X
116
, pp.
113
123
.
17.
Nagoga
,
G. P.
, 1996, “
Effective Methods of Cooling of Blades of High Temperature Gas Turbines
,” (Moscow Aerospace Institute, Moscow, Russian), p.
100
.
18.
Goreloff
,
V.
,
Goychengerg
,
M.
, and
Malkoff
,
V.
, 1990, “
The Investigation of Heat Transfer in Cooled Blades of Gas Turbines
,” AIAA Paper No. 90-2144.
19.
Gillespie
,
D.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
, 2000, “
Detailed Flow and Heat Transfer Coefficient Measurements in a Model of an Internal Cooling Geometry Employing Orthogonal Intersecting Channels
,” ASME Paper No. 2000-GT-653.
20.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
, 1930,
Publications on Engineering
,
2
, University of California at Berkeley, Berkeley, CA, p.
443
.
21.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
,
3rd Ed.
,
McGraw–Hill
, New York.
22.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501
75
, pp.
3
8
.
23.
Zhou
,
F.
,
Lagrone
,
J.
, and
Acharya
,
S.
, 2004, “
Internal Cooling in 4:1 AR Passages at High Rotation Numbers
,” ASME Paper No. GT2004-53501.
24.
Lau
,
S. C.
, 2001,
Cooling of Gas Turbine Airfoils, in Heat Transfer in Gas Turbines
,
B.
Sunden
, and
M.
Faghri
, eds.,
WIT Press
, Southampton, U. K., pp.
109
173
.
You do not currently have access to this content.