Large eddy simulations (LES) and unsteady Reynolds averaged Navier-Stokes (URANS) simulations have been performed for flow and heat transfer in a rotating ribbed duct. The ribs are oriented normal to the flow and arranged in a staggered configuration on the leading and trailing surfaces. The LES results are based on a higher-order accurate finite difference scheme with a dynamic Smagorinsky model for the subgrid stresses. The URANS procedure utilizes a two equation k-ε model for the turbulent stresses. Both Coriolis and centrifugal buoyancy effects are included in the simulations. The URANS computations have been carried out for a wide range of Reynolds number (Re=12,500-100,000), rotation number (Ro=0-0.5) and density ratio (Δρρ=0-0.5), while LES results are reported for a single Reynolds number of 12,500 without and with rotation (Ro=0.12,Δρρ=0.13). Comparison is made between the LES and URANS results, and the effects of various parameters on the flow field and surface heat transfer are explored. The LES results clearly reflect the importance of coherent structures in the flow, and the unsteady dynamics associated with these structures. The heat transfer results from both LES and URANS are found to be in reasonable agreement with measurements. LES is found to give higher heat transfer predictions (5–10% higher) than URANS. The Nusselt number ratio (NuNu0) is found to decrease with increasing Reynolds number on all walls, while they increase with the density ratio along the leading and trailing walls. The Nusselt number ratio on the trailing and sidewalls also increases with rotation. However, the leading wall Nusselt number ratio shows an initial decrease with rotation (till Ro=0.12) due to the stabilizing effect of rotation on the leading wall. However, beyond Ro=0.12, the Nusselt number ratio increases with rotation due to the importance of centrifugal-buoyancy at high rotation.

1.
Han
,
J. C.
, and
Park
,
J. S.
, 1988, “
Developing Heat Transfer in Rectangular Channel With Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
1
), pp.
183
195
.
2.
Han
,
J. C.
,
Ou
,
S.
,
Park
,
J. S.
, and
Lei
,
C. K.
, 1989, “
Augmented Heat Transfer in Rectangular Channels of Narrow Aspect Ratios with Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
9
) pp.
1619
1630
.
3.
Han
,
J. C.
, 1988, “
Heat Transfer and Friction Characteristics in Rectangular Channels With Rib Turbulators
,”
ASME J. Heat Transfer
0022-1481,
110
, pp.
321
328
.
4.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
, 1992, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
847
857
.
5.
Johnson
,
B. V.
,
Wagner
,
J. H.
, and
Steuber
,
G. D.
, 1993, “
Effect of Rotation on Coolant Passage Heat Transfer
,” NASA Contractor Report-4396, Vol.
II
.
6.
Chen
,
Y.
,
Nikitopoulos
,
D. E.
,
Hibbs
,
R.
,
Acharya
,
S.
, and
Myrum
,
T. A.
, 2000, “
Detailed Mass Transfer Distribution in a Ribbed Coolant Passage with a 180°
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
1479
1492
.
7.
Azad
,
G. S.
,
Uddin
,
M. J.
,
Han
,
J.-C.
,
Moon
,
H.-K.
, and
Glezer
,
B.
, 2002, “
Heat Transfer in a Two-Pass Rectangular Rotating Channel with 45° angled rib turbulators
,”
ASME J. Turbomach.
0889-504X,
124
, pp.
251
259
.
8.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
, 2002, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) with Angled Ribs
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
617
625
.
9.
Stephens
,
M. A.
,
Shih
,
T. I.-P.
, and
Civinskas
,
K. C.
, 1995, “
Computation of Flow and Heat Transfer in a Rectangular Channel with Ribs
,” AIPP paper no. 95-0180.
10.
Rigby
,
D. L.
,
Steinthorsson
,
E.
, and
Ameri
,
A. A.
, 1997, “
Numerical Prediction of Heat Transfer in a Channel with Ribs and Bleed
,” ASME paper no. 97-GT-431.
11.
Bo
,
T.
,
Iacovides
,
H.
, and
Launder
,
B. E.
, 1995, “
Developing Buoyancy-Modified Turbulent Flow in Ducts Rotating in Orthogonal Mode
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
474
484
.
12.
Iacovides
,
H.
, 1998, “
Computation of Flow and Heat Transfer Through Rotating Ribbed Passage
,”
Int. J. Heat Fluid Flow
0142-727X,
19
, pp.
393
400
.
13.
Al-Qahtani
,
M.
,
Jang
,
Y.-J.
,
Chen
,
H.-C.
, and
Han
,
J. C.
, 2002, “
Prediction of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels with 45° Rib Turbulators
,”
ASME J. Turbomach.
0889-504X,
124
(
2
), pp.
242
250
.
14.
Huser
,
A.
,
Biringen
,
S.
, and
Hatay
,
F. F.
, 1994, “
Direct Simulation of Turbulent Flow in a Square Duct: Reynolds-Stress Budgets
,”
Phys. Fluids
1070-6631,
6
(
9
), pp.
3144
3152
.
15.
Gavrilakis
,
S.
, 1992, “
Numerical Simulation of Low Reynolds Number Turbulent Flow Through a Straight Square Duct
,”
J. Fluid Mech.
0022-1120,
244
, pp.
101
129
.
16.
Tafti
,
D. K.
, and
Vanka
,
S. P.
, 1991, “
A Numerical Study of the Effects of Spanwise Rotation on Turbulent Channel Flow
,”
Phys. Fluids A
0899-8213,
3
(
4
), pp.
642
656
.
17.
Piomelli
,
U.
, and
Liu
,
J.
, 1995, “
Large-Eddy Simulation of Rotating Channel Flows Using a Localised Dynamic Model
,”
Phys. Fluids
1070-6631,
7
, pp.
839
848
.
18.
Pallares
,
J.
, and
Davidson
,
L.
, 2000, “
Large Eddy Simulations of Turbulent Flow in a Rotating Square Duct
,”
Phys. Fluids
1070-6631,
12
(
11
), pp.
2878
2894
.
19.
Murata
,
A.
, and
Mochizuki
,
S.
, 2001, “
Effect of Centrifugal Buoyancy on Turbulent Heat Transfer in an Orthogonally Rotating Square Duct with Transverse or Angled Rib Turbulators
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2739
2750
.
20.
Wang
,
G.
, and
Vanka
,
S. P.
, 1995, “
Convective Heat Transfer in Periodic Wavy Passages
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
17
), pp.
3219
3230
.
21.
Lilly
,
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
0899-8213,
4
, pp.
633
635
.
22.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
, 1991, “
A Dynamic Subgrid-Scale eddy Viscosity Model
,”
Phys. Fluids A
0899-8213,
3
, pp.
1760
1765
.
23.
Zang
,
Y.
,
Street
,
R. L.
, and
Koseff
,
J. R.
, 1993, “
A Dynamic Subgrid-Scale Model and Its Application to Turbulent Recirculating Flows
,”
Phys. Fluids A
0899-8213,
5
, pp.
3186
3196
.
24.
Moin
,
P.
,
Squires
,
K.
,
Cabot
,
W.
, and
Lee
,
S.
, 1991 “
A Dynamic Subgrid-Scale Model for Compressible Turbulence and Scalar Transport
,”
Phys. Fluids A
0899-8213,
3
, pp.
2746
2757
.
25.
Kato
,
M.
, and
Launder
,
B. E.
, 1993, “
The Modelling of Turbulent Flow around Stationery and Vibrating Square Cylinders
,”
Proc. 9th Symposium on Turbulent Shear Flows
,
Kyoto
, Japan, Vol.
10-4
.
26.
Saha
,
A. K.
,
Biswas
,
G.
, and
Muralidhar
,
K.
, 2001, “
Two-Dimensional Study of the Turbulent Wake Behind a Square Cylinder Subject to Uniform Shear
,”
ASME J. Fluids Eng.
0098-2202,
123
, pp.
595
603
.
27.
Harlow
,
F. H.
, and
Welch
,
J. E.
, 1965, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surfaces
,”
Phys. Fluids
0031-9171,
8
, pp.
2182
2188
.
28.
Saha
,
A. K.
, and
Acharya
,
S.
, 2001, “
Three-Dimensional Flow and Heat Transfer Calculations in Micro-Channel Heat Exchangers
,” HTD-366-3,
Proceeding of the ASME Heat Transfer Division
, IMECE 2001, New York, NY, 11–16 November, Vol.
3
.
29.
Kawamura
,
T.
,
Takami
,
H.
, and
Kuwahara
,
K.
, 1986, “
Computation of High Reynolds Number Flow around a Circular Cylinder with Surface Roughness
,”
Fluid Dyn. Res.
0169-5983,
1
, pp.
145
162
.
You do not currently have access to this content.