The paper presents detailed experimental results of the secondary flows from two large-scale, low-speed linear turbine cascades. The aerofoils for the two cascades were designed for the same inlet and outlet conditions and differ mainly in their leading-edge geometries. Detailed flow field measurements were made upstream and downstream of the cascades using three and seven-hole pressure probes and static pressure distributions were measured on the aerofoil surfaces. All measurements were made exclusively at the design incidence. The results from this experiment suggest that the strength of the passage vortex plays an important role in the downstream flow field and loss behavior. It was concluded that the aerofoil loading distribution has a significant influence on the strength of this vortex. In contrast, the leading-edge geometry appears to have only a minor influence on the secondary flow field, at least for the design incidence.

1.
Benner
,
M. W.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
1997
, “
Influence of Leading-Edge Geometry on Profile Losses in Turbines at Off-Design Incidence: Experimental Results and an Improved Correlation
,”
ASME J. Turbomach.
,
119
, pp.
193
200
.
2.
Benner, M. W., Sjolander, S. A., and Moustapha, S. H., 1997, “Measurements of Secondary Flows in a Turbine Cascade at Off-Design Incidence,” ASME Paper 97-GT-382.
3.
Sieverding
,
C. H.
,
1985
, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Turbomach.
,
107
, pp.
249
257
.
4.
Gregory-Smith, D. G., 1997, “Secondary and Tip-Clearance Flows in Axial Turbines,” VKI LS 1997-01, Von Karman Institute for Fluid Dynamics, Rhode St. Genese, Belgium.
5.
Langston
,
L. S.
,
2001
, “
Secondary Flows in Axial Turbines—A Review
,”
Ann. N.Y. Acad. Sci.
934
, pp.
11
26
.
6.
Baker
,
C. J.
,
1980
, “
The Turbulent Horeshoe Vortex
,”
J. Wind. Eng. Ind. Aerodyn.
,
6
, pp.
9
23
.
7.
Eckerle
,
W. A.
, and
Langston
,
L. S.
,
1987
, “
Horseshoe Vortex Formation Around a Cylinder
,”
ASME J. Turbomach.
,
109
, pp.
278
285
.
8.
Pierce
,
F. J.
, and
Tree
,
I. K.
,
1990
, “
The Mean Flow Structure on the Symmetry Plane of a Turbulent Junction Vortex
,”
ASME J. Fluids Eng.
,
112
, pp.
16
22
.
9.
Devenport
,
W. J.
, and
Simpson
,
R. L.
,
1990
, “
Time-Dependent and Time-Averaged Turbulence Structure Near the Nose of a Wing-Body Junction
,”
J. Fluid Mech.
,
210
, pp.
23
55
.
10.
Ballio
,
F.
,
Bettoni
,
C.
, and
Franzetti
,
S.
,
1998
, “
A Survey of Time-Averaged Characteristics of Laminar and Turbulent Horseshoe Vortices
,”
ASME J. Fluids Eng.
,
120
, pp.
233
242
.
11.
Moore
,
J.
, and
Ransmayr
,
A.
,
1984
, “
Flow in a Turbine Cascade—Part 1: Losses and Leading-Edge Effects
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
400
408
.
12.
Goobie, S. M., Moustapha, S. H., and Sjolander, S. A., 1989, “An Experimental Investigation of the Effect of Incidence on the Two-Dimensional Performance of an Axial Turbine Cascade,” Proceedings, Ninth International Symposium on Air Breathing Engines, pp. 197–204.
13.
Tremblay, B., Sjolander, S. A., and Moustapha, S. H., 1990, “Off-Design Performance of a Linear Cascade of Turbine Blades,” ASME Paper 90-GT-314.
14.
Rodger, P., Sjolander, S. A., and Moustapha, S. H., 1992, “Establishing Two-Dimensional Flow in a Large-Scale Planar Turbine Cascade,” AIAA Paper 92-3066.
15.
Moustapha
,
S. H.
,
Kacker
,
S. C.
, and
Tremblay
,
B.
,
1990
, “
An Improved Incidence Losses Prediction Method for Turbine Airfoils
,”
ASME J. Turbomach.
,
112
, pp.
267
276
.
16.
Korakianitis
,
T.
, and
Papagiannidis
,
P.
,
1993
, “
Surface-Curvature-Distribution Effects on Turbine Cascade Performance
,”
ASME J. Turbomach.
,
115
, pp.
334
341
.
17.
Gregory-Smith
,
D. G.
,
Graves
,
C. P.
, and
Walsh
,
J. A.
,
1988
, “
Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade
,”
ASME J. Turbomach.
,
110
, pp.
1
8
.
18.
Yaras
,
M. I.
, and
Sjolander
,
S. A.
,
1990
, “
Development of the Tip-Leakage Flow Downstream of a Planar Cascade of Turbine Blades: Vorticity Field
,”
ASME J. Turbomach.
,
112
, pp.
609
617
.
19.
Gregory-Smith
,
D. G.
, and
Cleak
,
J. G. E.
,
1992
, “
Secondary Flow Measurements in a Turbine Cascade With High Inlet Turbulence
,”
ASME J. Turbomach.
,
114
, pp.
173
183
.
20.
Marchal, P., and Sieverding, C. H., 1977, “Secondary Flows within Turbomachinery Bladings,” Secondary Flows in Turbomachines, AGARD-CP-214, Paper 11, pp. 1–19.
21.
Hodson
,
H. P.
, and
Dominy
,
R. G.
,
1987
, “
Three-Dimensional Flow in a Low-Pressure Turbine Cascade at its Design Condition
,”
ASME J. Turbomach.
,
109
, pp.
177
185
.
22.
Perdichizzi
,
A.
, and
Dossena
,
V.
,
1993
, “
Incidence Angle and Pitch-Chord Effects on Secondary Flows Downstream of a Turbine Cascade
,”
ASME J. Turbomach.
,
115
, pp.
383
391
.
23.
Weiss
,
A. P.
, and
Fottner
,
L.
,
1995
, “
The Influence of Load Distribution on Secondary Flow in Turbine Cascades
,”
ASME J. Turbomach.
,
117
, pp.
133
141
.
24.
Sharma
,
O. P.
, and
Butler
,
T. L.
,
1987
, “
Predictions of Endwall Losses and Secondary Flows in Axial Turbine Cascades
,”
ASME J. Turbomach.
,
109
, pp.
229
236
.
25.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
, pp.
1
8
.
26.
Sonoda, T., 1985, “Experimental Investigation on Spatial Development of Streamwise Vortices in a Turbine Inlet Guide Vane Cascade,” ASME Paper 85-GT-20.
27.
Jabbari
,
M. Y.
,
Goldstein
,
R. J.
,
Marston
,
K. C.
, and
Eckert
,
E. R. G.
,
1992
, “
Three-Dimensional Flow at the Junction between a Turbine Blade and End-Wall
,”
Waerme- Stoffuebertrag.
,
27
, pp.
51
59
.
28.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachinery
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.
29.
Moore
,
J.
, and
Smith
,
B. L.
,
1984
, “
Flow in a Turbine Cascade: Part 2—Measurement of Flow Trajectories by Ethylene Detection
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
409
413
.
30.
Sieverding
,
C. H.
, and
Van den Bosche
,
P.
,
1983
, “
The Use of Coloured Smoke to Visualize Secondary Flows in a Turbine-Blade Cascade
,”
J. Fluid Mech.
,
134
, pp.
85
89
.
31.
Whitehouse
,
D. R.
,
Moustapha
,
S. H.
, and
Sjolander
,
S. A.
,
1993
, “
The Effect of Axial Velocity Ratio, Turbulence Intensity, Incidence, and Leading Edge Geometry on the Midspan Performance of a Turbine Cascade
,”
Can. Aeronautics Space J.
,
39
, pp.
150
156
.
32.
Kind
,
R. J.
,
Serjak
,
P. J.
, and
Abbott
,
M. W. P.
,
1998
, “
Measurements and Prediction of the Effects of Surface Roughness on Profile Losses and Deviation in a Turbine Cascade
,”
ASME J. Turbomach.
,
120
, pp.
20
27
.
33.
Marchal, P., 1980, “Etude des ecoulements secondaires en grille d’aubes de detente,” Ph.D. thesis, Universit Libre de Bruxelles, Brussels, Belgium.
34.
Sauer
,
H.
,
Muller
,
R.
, and
Vogeler
,
K.
,
2001
, “
Reduction of Secondary Flow Losses in Turbine Cascades by Leading Edge Modifications at the Endwall
,”
ASME J. Turbomach.
,
123
, pp.
207
213
.
35.
Mehta
,
R. D.
,
1984
, “
Effect of Wing Nose Shape on the Flow in a Wing/Body Junction
,”
Aeronaut. J.
,
21
, pp.
499
522
.
36.
Kubendran
,
L. R.
,
McMahon
,
H. M.
, and
Hubbartt
,
J. E.
,
1986
, “
Turbulent Flow Around a Wing/Fuselage-Type Juncture
,”
AIAA J.
,
24
, pp.
1447
1452
.
37.
Langston
,
L. S.
,
Nice
,
M. L.
, and
Hooper
,
R. M.
,
1977
, “
Three-Dimensional Flow Within a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
99
, pp.
21
28
.
38.
Kacker
,
S. C.
, and
Okapuu
,
U.
,
1982
, “
A Mean Line Prediction Method for Axial Flow Turbine Efficiency
,”
ASME J. Turbomach.
,
104
, pp.
111
119
.
39.
Ainley, D. G., and Mathieson, G. C. R., 1951, “A Method of Performance Estimation for Axial Flow Turbines,” British ARC, R&M 2974.
40.
Dunham
,
J.
, and
Came
,
P. M.
,
1970
, “
Improvements to the Ainley-Mathieson Method Turbine Performance Prediction Method
,”
ASME J. Eng. Power
,
88
, pp.
252
256
.
41.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
, 1971, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
1970–1971
, ImechE, London,
185, 32/71
, pp.
407
424
.
42.
Traupel, W., 1977, Thermische Turbomaschinen, Springer-Verlag, Berlin.
43.
Sieverding
,
C. H.
,
1985
, “
Axial Turbine Performance Prediction Methods
,”
Thermodynamics and Fluid Mechanics of Turbomachinery (Vol.
1 of NATO ASI, Series E
), pp.
737
784
.
You do not currently have access to this content.