This paper presents the development and implementation of a new model for bypass and natural transition prediction using Reynolds-averaged Navier-Stokes computational fluid dynamics (CFD), based on modification of two-equation, linear eddy-viscosity turbulence models. The new model is developed herein based on considerations of the universal character of transitional boundary layers that have recently been documented in the open literature, and implemented into a popular commercial CFD code (FLUENT) in order to assess its performance. Two transitional test cases are presented: (1) a boundary layer developing on a flat heated wall, with free-stream turbulence intensity Tu ranging from 0.2 to 6%; and (2) flow over a turbine stator vane, with chord Reynolds number 2.3×105, and Tu from 0.6 to 20%. Results are presented in terms of Stanton number, and compared to experimental data for both cases. Results show good agreement with the test cases and suggest that the new approach has potential as a predictive tool.

1.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
Impact of Film-Cooling Jets on Turbine Aerodynamic Losses
,”
ASME J. Turbomach.
,
122
, pp.
537
545
.
2.
Walters, D. K., and Leylek, J. H., 2002, “Computational Study of Film-Cooling Effectiveness on a Low-Speed Airfoil Cascade—Part II: Discussion of Physics,” ASME Paper No. DETC2002/CIE-34422.
3.
Savill, A. M., 1993, “Some Recent Progress in the Turbulence Modelling of By-Pass Transition,” in Near-Wall Turbulent Flows, So, R. M. C., Speziale, C. G., and Launder, B. E. (eds.), Elsiver Science, New York, pp. 829–848.
4.
Wilcox
,
D. C.
,
1994
, “
Simulation of Transition with a Two-Equation Turbulence Model
,”
AIAA J.
,
32
, pp.
247
255
.
5.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
,
1997
, “
Prediction of Turbulent Transitional Phenomena with a Nonlinear Eddy-Viscosity Model
,”
Int. J. Heat Fluid Flow
,
18
, pp.
15
28
.
6.
Chen
,
W. L.
,
Lien
,
F. S.
, and
Leschziner
,
M. A.
,
1998
, “
Non-Linear Eddy-Viscosity Modelling of Transitional Boundary Layers Pertinent to Turbomachine Aerodynamics
,”
Int. J. Heat Fluid Flow
,
19
, pp.
297
306
.
7.
Chernobrovkin
,
A.
, and
Lakshminarayana
,
B.
,
1999
, “
Turbulence Modeling and Computation of Viscous Transitional Flows for Low Pressure Turbines
,”
ASME J. Fluids Eng.
,
121
, pp.
824
833
.
8.
Suzen
,
Y. B.
, and
Huang
,
P. G.
,
2000
, “
Modeling of Flow Transition Using an Intermittency Transport Equation
,”
ASME J. Fluids Eng.
,
122
, pp.
273
284
.
9.
Steelant
,
J.
, and
Dick
,
E.
,
2001
, “
Modeling of Laminar-Turbulent Transition for High Freestream Turbulence
,”
ASME J. Fluids Eng.
,
123
, pp.
22
30
.
10.
Volino
,
R. J.
,
1998
, “
A New Model for Free-Stream Turbulence Effects on Boundary Layers
,”
ASME J. Turbomach.
,
120
, pp.
613
620
.
11.
Baek
,
S. G.
,
Chung
,
M. K.
, and
Lim
,
H. J.
,
2001
, “
k-ε Model for Predicting Transitional Boundary-Layer Flows Under Zero-Pressure Gradient
,”
AIAA J.
,
39
, pp.
1699
1705
.
12.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
,
2001
, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
,
430
, pp.
149
168
.
13.
Klebanoff, P. S., 1971, “Effects of Free-Stream Turbulence on a Laminar Boundary Layer,” Bull. Am. Phys. Soc., 16.
14.
Jacobs
,
R. G.
, and
Durbin
,
P. A.
,
2001
, “
Simulations of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.
15.
Mayle
,
R. E.
, and
Schulz
,
A.
,
1997
, “
The Path to Predicting Bypass Transition
,”
ASME J. Turbomach.
,
119
, pp.
405
411
.
16.
Volino
,
R. J.
, and
Simon
,
T. W.
,
1997
, “
Boundary Layer Transition Under High Free-Stream Turbulence and Strong Acceleration Conditions: Part 2—Turbulent Transport Results
,”
ASME J. Heat Transfer
,
119
, pp.
427
432
.
17.
Leib
,
S. J.
,
Wundrow
,
D. W.
, and
Goldstein
,
M. E.
,
1999
, “
Effect of Free-Stream Turbulence and Other Vortical Disturbances on a Laminar Boundary Layer
,”
J. Fluid Mech.
,
380
, pp.
169
203
.
18.
Johnson
,
M. W.
, and
Ercan
,
A. H.
,
1999
, “
A Physical Model for Bypass Transition
,”
Int. J. Heat Fluid Flow
,
20
, pp.
95
104
.
19.
Bradshaw
,
P.
,
1994
, “
Turbulence: The Chief Outstanding Difficulty of Our Subject
,”
Exp. Fluids
,
16
, pp.
203
216
.
20.
Luchini
,
P.
,
2000
, “
Reynolds-Number-Independent Instability of the Boundary Layer Over a Flat Surface: Optimal Perturbations
,”
J. Fluid Mech.
,
404
, pp.
289
309
.
21.
Andersson
,
P.
,
Berggren
,
M.
, and
Henningson
,
D. S.
,
1999
, “
Optimal Disturbances and Bypass Transition in Boundary Layers
,”
Phys. Fluids
,
11
, pp.
134
150
.
22.
Schlichting, H., 1968, Boundary Layer Theory, 6th Edition, McGraw Hill, New York, 1968.
23.
Durbin
,
P. A.
,
1996
, “
On the k-ε Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
,
17
, pp.
89
90
.
24.
Moore, J. G., and Moore, J., 1999, “Realizability in Turbulence Modeling for Turbomachinery CFD,” ASME Paper No. 99-GT-24.
25.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
, pp.
227
238
.
26.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R. D.
,
1987
, “
Turbulence Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
186
.
27.
Blair
,
M. F.
,
1983
, “
Influence of Free-Stream Turbulence on Turbulent Boundary Layer Heat Transfer and Mean Profile Development, Part I—Experimental Data
,”
ASME J. Heat Transfer
,
105
, pp.
33
40
.
28.
Wolfstein
,
M.
,
1969
, “
The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
, pp.
301
318
.
29.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,”
ASME J. Turbomach.
,
122
, pp.
255
262
.
30.
Radomsky, R. W., and Thole, K. A., 2001, “Detailed Boundary-Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels,” ASME Paper No. 2001-GT-0169.
31.
Thole, K. A., 2002, personal communications.
You do not currently have access to this content.