The current demands for high-performance gas turbine engines can be reached by raising combustion temperatures to increase power output. High combustion temperatures create a harsh environment that leads to the consideration of the durability of the combustor and turbine sections. This paper presents a computational study of a flow field that is representative of what occurs in a combustor and how that flow field convects through the first downstream stator vane. The results of this study indicate that the development of the secondary flow field in the turbine is highly dependent on the incoming total pressure profile. The endwall heat transfer is also found to depend strongly on the secondary flow field.
Issue Section:
Technical Papers
1.
Langston
, L. S.
, 1980
, “Crossflows in a Turbine Cascade Passage
,” J. Eng. Power
, 102
, pp. 866
–874
.2.
Schwab, J. R., Stabe, R. G., and Whitney, W. J., 1983, “Analytical and Experimental Study of Flow through and Axial Turbine Stage with a Nonuniform Inlet Radial Temperature Profile,” AIAA paper no. 83-1175.
3.
Stabe, R. G., Whitney, W. J., and Moffitt, T. P., 1984, “Performance of High-Work Low-Aspect Ratio Turbine Tested with a Realistic Inlet Radial Temperature Profile,” AIAA paper no. 84-1161.
4.
Butler
, T. L.
, Sharma
, O. P.
, Joslyn
, H. D.
, and Dring
, R. P.
, 1989
, “Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,” J. Propul. Power
, 5
, pp. 64
–71
.5.
Munk
, M.
, and Prim
, R. C.
, 1947
, “On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,” Proc. Natl. Acad. Sci. U.S.A.
, 33
, pp. 137
–141
.6.
Shang
, T.
, and Epstein
, A. H.
, 1997
, “Analysis of Hot Streak Effects on Turbine Rotor Heat Load
,” J. Turbomach.
, 119
, pp. 544
–553
.7.
Hermanson
, K. S.
, and Thole
, K. A.
, 2000
, “Effect of Inlet Conditions on Endwall Secondary Flows
,” J. Propul. Power
, 16
, pp. 286
–296
.8.
Blair, M. F., 1974, “An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls,” J. Heat Transfer, pp. 524–529.
9.
Granser, D., and Schulenberg, T., 1990, “Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud,” ASME paper no. 90-GT-95.
10.
Burd, S. W., and Simon, T. W., “Effects of Slot Bleed Injection over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part I: Flow Field Measurements,” ASME paper no. 2000-GT-199.
11.
Burd, S. W., Satterness, C. J., and Simon, T. W., 2000, “Effects of Slot Bleed Injection over a Contoured Endwall on Nozzle Guide Vane Cooling Performance: Part II Thermal Measurements,” ASME paper no. 2000-GT-200.
12.
Oke, R., Simon, T., Burd, S. W., and Vahlberg, R., 2000, “Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow,” ASME paper no. 2000-GT-214.
13.
Oke, R., Simon, T., Shih, T. Zhu, B., Lin, Y. L., and Chyu, M., 2001, “Measurements Over a Film-Cooled, Contoured Endwall with Various Coolant Injection Rates,” ASME paper no. 2001-GT-140.
14.
Kost, F., and Nicklas, M., 2001, “Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I—Aerodynamic Measurements,” ASME paper no. 2001-GT-0145.
15.
Nicklas, M., 2001, “Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II—Heat Transfer and Film-Cooling Effectiveness Measurements,” ASME paper no. 2001-GT-0146.
16.
Colban, W. F., Thole, K. A., and Zess, G., 2002, “Combustor-Turbine Interface Studies: Part 1: Endwall Measurements,” ASME paper no. 2002-GT-30526.
17.
Colban, W. F., Lethander, A., T., Thole, K. A., and Zess, G., 2002, “Combustor-Turbine Interface Studies: Part 2: Flow and Thermal Field Measurements,” ASME paper no. 2002-GT-30527.
18.
Launder
, B. E.
, and Spalding
, D. B.
, 1974
, “The Numerical Computation of Turbulent Flows
,” Comput. Methods Appl. Mech. Eng.
, 3
, pp. 269
–289
.19.
Yakhot
, V.
, and Orszag
, S.
, 1986
, “Renormalization Group Analysis of Turbulence: I. Basic Theory
,” J. Sci. Comput.
, 1
, pp. 1
–51
.20.
Launder
, B. E.
, Reece
, G. J.
, and Rodi
, W.
, 1975
, “Progress in the Development of a Reynolds-Stress Turbulence Closure
,” J. Fluid Mech.
, 68
, pp. 537
–566
.21.
Barringer
, M. D.
, Richard
, O. T.
, Walter
, J. P.
, Stitzel
, S. M.
, and Thole
, K. A.
, 2002
, “Flow Field Simulations of a Gas Turbine Combustor
,” J. Turbomach.
, 124
, pp. 508
–516
.22.
Soechting, F. O., and Cheung, A., 1999, private communication.
23.
Kang
, M.
, and Thole
, K. A.
, 2000
, “Flowfield Measurements in the Endwall Region of a Stator Vane
,” J. Turbomach.
, 122
, pp. 458
–466
.24.
Radomsky
, R. W.
, and Thole
, K. A.
, 2000
, “Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage
,” J. Turbomach.
, 122
, pp. 255
–262
.25.
Radomsky
, R.
, and Thole
, K. A.
, 2000
, “High Freestream Turbulence Effects in the Endwall Leading Edge Region
,” J. Turbomach.
, 122
, pp. 699
–708
.Copyright © 2004
by ASME
You do not currently have access to this content.