Detailed heat transfer measurements and predictions are given for a power generation turbine rotor with 127 deg of nominal turning and an axial chord of 130 mm. Data were obtained for a set of four exit Reynolds numbers comprised of the facility maximum point of 2.50×106, as well as conditions which represent 50%, 25%, and 15% of this maximum condition. Three ideal exit pressure ratios were examined including the design point of 1.443, as well as conditions which represent 25% and +20% of the design value. Three inlet flow angles were examined including the design point and ±5deg off-design angles. Measurements were made in a linear cascade with highly three-dimensional blade passage flows that resulted from the high flow turning and thick inlet boundary layers. Inlet turbulence was generated with a blown square bar grid. The purpose of the work is the extension of three-dimensional predictive modeling capability for airfoil external heat transfer to engine specific conditions including blade shape, Reynolds numbers, and Mach numbers. Data were obtained by a steady-state technique using a thin-foil heater wrapped around a low thermal conductivity blade. Surface temperatures were measured using calibrated liquid crystals. The results show the effects of strong secondary vortical flows, laminar-to-turbulent transition, and also show good detail in the stagnation region.

1.
Arts
,
T.
,
Duboue
,
J.-M.
, and
Roolin
,
G.
,
1998
, “
Aerothermal Performance Measurements and Analysis of a Two-Dimensional High Turning Rotor Blade
,”
ASME J. Turbomach.
,
120
(
3
), pp.
494
499
.
2.
Camci
,
C.
, and
Arts
,
T.
,
1991
, “
Effect of Incidence on Wall Heating Rates and Aerodynamics on a Film Cooled Transonic Turbine Blade
,”
ASME J. Turbomach.
,
113
(
3
), pp.
493
513
.
3.
Baughn, J. W., Butler, R. J., Byerley, A. R., and Rivir, R. B., 1995, “An Experimental Investigation of Heat Transfer, Transition and Separation on Turbine Blades at Low Reynolds Number and High Turbulence Intensity,” ASME Paper 95-WA/HT-25.
4.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
,
1989
, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
,
111
, pp.
1
7
.
5.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
R. J.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
,
102
, pp.
1
11
.
6.
Blair
,
M. F.
,
1994
, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
,
116
, pp.
1
13
.
7.
Dunn
,
M. G.
,
Kim
,
J.
,
Civinskas
,
K. C.
, and
Boyle
,
R. J.
,
1994
, “
Time-Averaged Heat Transfer and Pressure Measurements and Comparison With Predictions for a Two-Stage Turbine
,”
ASME J. Turbomach.
,
116
, pp.
14
23
.
8.
Giel, P. W., Van Fossen, G. J., Boyle, R. J., Thurman, D. R., and Civinskas, K. C., 1999, “Blade Heat Transfer Measurements and Predictions in a Transonic Turbine Cascade,” ASME Paper 99-GT-125.
9.
Giel, P. W., Bunker, R. S., Van Fossen, G. J., and Boyle, R. J., 2000, “Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade,” ASME Paper 2000-GT-0209.
10.
Joslyn
,
D.
, and
Dring
,
R.
,
1992
, “
Three-Dimensional Flow in an Axial Turbine: Part 1—Aerodynamic Mechanisms
,”
ASME J. Turbomach.
,
114
, pp.
61
70
.
11.
Thulin, R. D., Howe, D. C., and Singer, I. D., 1982, “Energy Efficient Engine—High-Pressure Turbine Detailed Design Report,” NASA CR-165608.
12.
Boyle, R. J., Lucci, B. L., and Senyitko, R. G., 2002, “Aerodynamic Performance and Turbulence Measurements in a Turbine Vane Cascade,” ASME Paper GT-2002-30434.
13.
Giel, P. W., Thurman, D. R., Lopez, I., Boyle, R. J., Van Fossen, G. J., Jett, T. J., Camperchioli, W. P., and La, H., 1996, “Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade,” ASME Paper 96-GT-113.
14.
Moffat, R. J., 1990, “Experimental Heat Transfer,” Proc. of the Ninth Int’l Heat Transfer Conf., Hemisphere, Washington, DC, 1, pp. 187–205.
15.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainty in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
(
Jan
), pp.
3
8
.
16.
Schlichting, H., 1979, Boundary-Layer Theory, Seventh Ed., McGraw-Hill, New York, p. 714.
17.
Chima
,
R. V.
, and
Yokota
,
J. W.
,
1990
, “
Numerical Analysis of Three-Dimensional Viscous Internal Flows
,”
AIAA J.
,
28
(
5
), pp.
798
806
.
18.
Chima, R. V., 1991, “Viscous Three-Dimensional Calculations of Transonic Fan Performance,” AGARD Propulsion and Energetics Symposium on Computational Fluid Mechanics for Propulsion, San Antonio, Texas, May 27–31.
19.
Arnone
,
A.
,
Liou
,
M.-S.
, and
Povinelli
,
L. A.
,
1992
, “
Navier-Stokes Solution of Transonic Cascade Flows Using Non-Periodic C-Type Grids
,”
J. Propul. Power
,
8
(
2
), pp.
410
417
.
20.
Boyle
,
R. J.
, and
Giel
,
P. W.
,
1995
, “
Three Dimensional Navier-Stokes Heat Transfer Predictions for Turbine Blade Rows
,”
J. Propul. Power
,
11
(
6
), pp.
1179
1186
.
21.
Chima, R. V., Giel, P. W., and Boyle, R. J., 1993, “An Algebraic Turbulence Model for Three-Dimensional Viscous Flows,” AIAA Paper 93-0083 (NASA TM-105931).
22.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
23.
Steelant, J., and Dick, E., 1999, “Prediction of By-Pass Transition by Means of a Turbulence Weighing Factor—Part I: Theory and Validation,” ASME Paper 99-GT-29.
24.
Boyle
,
R. J.
, and
Simon
,
F. F.
,
1999
, “
Mach Number Effects on Turbine Blade Transition Length Prediction
,”
ASME J. Turbomach.
,
121
, pp.
694
702
.
25.
Solomon, W. J., Walker, G. J., and Gostelow, J. P., 1995, “Transition Length Prediction For Flows With Rapidly Changing Pressure Gradients,” ASME Paper 95-GT-241.
26.
Smith
,
M. C.
, and
Kuethe
,
A. M.
,
1966
, “
Effects of Turbulence on Laminar Skin Friction and Heat Transfer
,”
Phys. Fluids
,
9
(
12
), pp.
2337
2344
.
27.
Dullenkopf
,
K.
, and
Mayle
,
R. E.
,
1995
, “
An Account of Free-Stream, Turbulence Length Scale on Laminar Heat Transfer
,”
ASME J. Turbomach.
,
117
, pp.
401
406
.
28.
Ames, F. E., and Moffat, R. J., 1990, “Heat Transfer with High Intensity, Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point,” Department of Mechanical Engineering Report No. HMT-44, Stanford University, Stanford, CA.
29.
Van Fossen
,
G. J.
,
Simoneau
,
R. J.
, and
Ching
,
C. Y.
,
1995
, “
Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation-Region Heat Transfer
,”
ASME J. Heat Transfer
,
117
, pp.
597
603
.
30.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
,
102
, pp.
866
874
.
31.
Van Fossen, G. J., 2003, personal communication.
32.
Boyle, R. J., and Senyitko, R. G., 2003, “Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics,” ASME Paper GT-2003-38580.
33.
Pinson
,
M. W.
, and
Wang
,
T.
,
2000
, “
Effect of Two-Scale Roughness on Boundary Layer Transition Over a Heated Flat Plate: Part 1—Surface Heat Transfer
,”
ASME J. Turbomach.
,
122
, pp.
301
307
.
You do not currently have access to this content.