This paper describes heat-transfer measurements and predictions obtained for the vane and blade of a rotating high-pressure turbine stage. The measurements were obtained with the stage operating at design corrected conditions. A previous paper described the aerodynamics and the blade midspan location heat-transfer data and compared these experimental results with predictions. The intent of the current paper is to concentrate on the measurements and predictions for the 20%, 50%, and 80% span locations on the vane, the vane inner and outer endwall, the 20% and 96% span location on the blade, the blade tip (flat tip), and the stationary blade shroud. Heat-transfer data obtained at midspan for three different thermal-barrier-coated vanes (fine, medium, and coarse) are also presented. Boundary-layer heat-transfer predictions at the off-midspan locations are compared with the measurements for both the vane and the blade. The results of a STAR-CD (a commercial code) three-dimensional prediction are compared with the 20% and 96% span results for the blade surface. Predictions are not available for comparison with the tip and shroud experimental results.

1.
Dunn
,
M. G.
,
2001
, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
,
123
, pp.
637
686
.
2.
Dunn, M. G., Moller, J. C., and Steele, R. C., 1989, “Operating Point Verification Data for a Large Shock Tunnel Test Facility,” WRDC Tech. Rep. No. WRDC-TR-89-2027.
3.
Bergholz, R. F., Dunn, M. G., and Steuber, G. D., 2000, “Rotor/Stator Heat Transfer Measurements and CFD Predictions for Short-Duration Turbine Rig Tests,” ASME paper No. 2000-GT-208.
4.
Rivir, R. B., Elrod, W. C., and Dunn, M. G., 1985, “Two Spot Laser Velocimeter Measurements of Velocity and Turbulence Intensity in Shock Tube Driven Turbine Flows,” AGARD Heat Transfer and Cooling in Gas Turbines, Conf. Proc. No. 390, pp. 33-1 to 33-12, Bergen, Norway.
5.
Dunn
,
M. G.
,
Kim
,
J.
, and
Rae
,
W. J.
,
1997
, “
Investigation of the Heat-Island Effect for Heat-Flux Measurements in Short-Duration Facilities
,”
ASME J. Turbomach.
,
119
, pp.
753
759
.
6.
Zilles, D. A., and Abhari, R. S., 1999, “Influence of Non-Isothermal Button Gage Surface Temperature in Heat Flux Measurement Applications,” Proc. IMECE99, Nashville, TN.
7.
Mukerji, D., Eaton, J. K., and Moffat, R. J., 1998, “A New Correlation for Temperature Rise Correction of Heat Flux Gages,” Proceedings of ASME HTD, Vol. 361-5, pp. 631–636.
8.
Mukerji, D., Eaton, J. K., Moffat, R. J., and Elkins, C. J., 1999, “A 2-D Numerical Study of the Heat-Island Effect for Button-Type Heat Flux Gages,” Paper AJTE 99/6186, Proc. 5th ASME/JSME Joint Thermal Engineering Conference.
9.
Kim
,
J.
,
Sakamoto
,
H.
, and
Dunn
,
M. G.
,
2000
, “
A Two-Dimensional Numerical Investigation of Transient Heat Flux Gage Performance in Short-Duration Facilities
,”
ASME J. Turbomach.
,
122
, pp.
184
187
.
10.
Suo, M., and Lounsbury, R., 1990, General Electric Aircraft Engines Co., private communication.
11.
Suo, M., and Lounsbury, R., 1990, General Electric Aircraft Engines Co., private communication.
12.
Crawford, M. E., and Kays, W. M., 1976, “STAN5—A Program for Numerical Computation of Two-Dimensional Internal and External Boundary Layer Flows,” NASA Report No. CR-2742.
13.
Rodi
,
W.
, and
Scheuerer
,
G.
,
1985
, “
Calculation of Heat Transfer to Convection-Cooled Gas Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
621
627
.
14.
Lam
,
C. K. S.
, and
Bremhorst
,
K.
,
1981
, “
A Modified Form of the k-ε Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
, pp.
456
460
.
15.
Zerkle, R. D., and Lounsbury, R. J., 1987, “The Influence of Freestream Turbulence and Pressure Gradient on Heat Transfer to Gas Turbine Airfoils,” AIAA paper no. AIAA-87-1917, AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conference, San Diego, CA.
16.
Bunker, 2000, “A Review of Turbine Blade Tip Heat Transfer,” presented at the Turbine 2000 International Symposium on Heat Transfer in Gas Turbine Systems, Izmir, Turkey.
17.
Ameri, A. A., and Bunker, R. S., 1999, “Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine Part 2: Simulation Results,” IGTI paper no. 99-GT-283.
18.
Rigby, D. L., Ameri, A. A., and Steinthorsson, E., 1996, “Internal Passage Heat Transfer Prediction Using Multiblock Grids and k-ω Turbulence Model,” ASME paper no. 96-GT-188.
19.
Ameri
,
A. A.
,
Steinthorsson
,
E.
, and
Rigby
,
D. L.
,
1998
, “
Effect of Squealer Tip on Rotor Heat Transfer and Efficiency
,”
ASME J. Turbomach.
,
120
, pp.
753
759
.
20.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
, pp.
502
507
.
21.
Ameri, A. A., and Steinthorsson, E., 1996, “Analysis of Unshrouded Rotor Blade Tip and Shroud Heat Transfer,” ASME paper no. 96-GT-189.
22.
Polanka, M. D., Hoying, D. A., Meininger, M., and MacArthur, C. D., 2002, “Turbine Tip and Shroud Heat Transfer and Loading Part A: Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas to Metal Temperature Ratio,” ASME paper no. GT-2002-30186.
23.
Dunn
,
M. G.
,
Rae
,
W. J.
, and
Holt
,
J. L.
,
1984
, “
Measurement and Analysis of Heat Flux Data in a Turbine Stage: Part II—Discussion of Results and Comparisons With Predictions
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
234
240
.
24.
Dunn
,
M. G.
,
Kim
,
J.
,
Civinskas
,
K. C.
, and
Boyle
,
R. J.
,
1994
, “
Time-Averaged Heat Transfer and Pressure Measurements and Comparison With Prediction for a Two-Stage Turbine
,”
ASME J. Turbomach.
,
116
, pp.
14
22
.
25.
Dunn
,
M. G.
, and
Hause
,
A.
,
1982
, “
Measurement of Heat Flux and Pressure in a Turbine Stage
,”
ASME J. Eng. Power
,
104
, pp.
215
223
.
26.
Epstein, A. H., Guenette, G. R., Norton, R. J. G., and Yuzhang, C., 1985, “Time Resolved Measurements of a Turbine Rotor Stationary Tip Casing Pressure and Heat Transfer Field,” AIAA paper no. 85-1220.
27.
Blair, M. F., and Anderson, O. L., 1989, “The Effect of Reynolds Number, Rotor Incidence Angle and Surface Roughness on the Heat Transfer Distribution in Large-Scale Turbine Rotor Passage,” United Technologies Research Center Report No. UTRC-R89-957852-24.
28.
Boyle, R. J., and Civinskas, K. C., 1991, “Two-Dimensional Navier-Stokes Heat Transfer Analysis for Rough Turbine Blades,” AIAA paper no. AIAA-91-2129.
29.
Taylor, R. P., Taylor, J. K., Hosni, M. H., and Coleman, H. W., 1991, “Heat Transfer in the Turbulent Boundary Layer With a Step Change in Surface Roughness,” ASME paper no. 91-GT-266.
30.
Blair
,
M. F.
,
1994
, “
An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage
,”
ASME J. Turbomach.
,
116
, pp.
1
13
.
31.
Boynton
,
J. L.
,
Tabibzadeh
,
R.
, and
Hudson
,
S. T.
,
1993
, “
Investigation of Rotor Blade Roughness Effects on Turbine Performance
,”
ASME J. Turbomach.
,
115
, pp.
614
620
.
You do not currently have access to this content.