As the world of research seeks ways of improving the efficiency of turbomachinery, attention has recently focused on a relatively new type of internal cooling channel geometry, the dimple. Preliminary investigations have shown that the dimple enhances heat transfer with minimal pressure loss. An investigation into determining the effect of rotation on heat transfer in a rectangular channel (aspect ratio=4:1) with dimples is detailed in this paper. The range of flow parameters includes Reynolds number Re=5000-40000, rotation number Ro=0.04-0.3 and inlet coolant-to-wall density ratio Δρ/ρ=0.122. Two different surface configurations are explored, including a smooth duct and dimpled duct with dimple depth-to-print diameter δ/Dp ratio of 0.3. A dimple surface density of 10.9 dimples/in2 was used for each of the principal surfaces (leading and trailing) with a total of 131 equally spaced hemispherical dimples per surface; the side surfaces are smooth. Two channel orientations of β=90 and 135 deg with respect to the plane of rotation are explored to determine channel orientation effect. Results show a definite channel orientation effect, with the trailing-edge channel enhancing heat transfer more than the orthogonal channel. Also, the dimpled channel behaves somewhat like a 45 deg angled rib channel, but with less spanwise variations in heat transfer.

1.
Schukin, A. V., Koslov, A. P., and Agachev, R. S., 1995, “Study and Application of Hemispherical Cavities for Surface Heat Transfer Augmentation,” ASME Paper No. 95-GT-59.
2.
Han
,
J. C.
, and
Park
,
J. S.
,
1988
, “
Developing Heat Transfer in Rectangular Channel With Rib Turbulators
,”
Int. J. Heat Mass Transf.
,
31
(
1
), pp.
183
195
.
3.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Hajek
,
T. J.
,
1991
, “
Heat Transfer in Rotating Passage With Smooth Walls and Radial Outward Flow
,”
ASME J. Turbomach.
,
113
, pp.
42
51
.
4.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kooper
,
F. C.
,
1991b
, “
Heat Transfer in Rotating Serpentine Passage With Smooth Walls
,”
ASME J. Turbomach.
,
113
(
3
), pp.
321
330
.
5.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Zhang
,
Y. M.
,
1995
, “
Effects of Model Orientation and Wall Heating Condition on Local Heat Transfer in a Rotating Two-Pass Square Channel With Rib Turbulators
,”
Int. J. Heat Mass Transf.
,
38
(
7
), pp.
1151
1159
.
6.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passage With Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
,
116
, pp.
738
744
.
7.
Dutta
,
S.
, and
Han
,
J. C.
,
1996
, “
Local Heat Transfer in Rotating Smooth and Ribbed Two-Pass Square Channels with Three Channel Orientations
,”
ASME J. Heat Transfer
,
118
, pp.
578
584
.
8.
Willett, F. T., and Bergles, A. E., 2000, “Heat Transfer in Rotating Narrow Rectangular Ducts with Heated Sides Oriented at 60deg to the R-Z Plane,” ASME Paper No. 2000-GT-224.
9.
Griffith
,
T. S.
,
Al-Hadhrami
,
L.
, and
Han
,
J. C.
,
2002
, “
Heat Transfer in Rotating Rectangular Cooling Channels (AR=4) With Angled Ribs
,”
ASME J. Heat Transfer
,
124
, pp.
617
625
.
10.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1996
, “
Effect of Simulated TBC Spallation on Local Heat Transfer Coefficient Distributions Using a Transient Liquid Crystal Image Method
,”
AIAA J. Thermophys. Heat Transfer
,
10
(
3
), pp.
511
516
.
11.
Azad
,
G. M. S.
,
Huang
,
Y.
, and
Han
,
J. C.
, 2000, “Jet Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique,” AIAA J. Thermophys. Heat Transfer, 14(2), pp. 186–193.
12.
Chyu, M. K., Yu, Y., and Ding, H., Downs, J. P., Soechting, O. 1997, “Concavity Enhanced Heat Transfer in an Internal Cooling Passage,” ASME Paper No. 97-GT-437.
13.
Moon, H. K., O’Connell, T., Glezer, B., 1999, “Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage,” ASME Paper No. 99-GT-163.
14.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
, pp.
115
123
.
15.
Zhou
,
F.
, and
Acharya
,
S.
,
2001
, “
Mass/Heat Transfer in Dimpled Two-Pass Coolant Passages with Rotation
,”
Heat Transfer in Gas Turbine Systems
, ed.,
R. J.
Goldstein
,
Ann. N.Y. Acad. Sci.
,
934
, pp.
424
431
.
16.
Han, J. C., Dutta, S., and Ekkad, S. V., 2000. Gas Turbine Heat Transfer and Cooling Technology, Taylor and Francis, New York.
17.
Han
,
J. C.
, and
Dutta
,
S.
,
2001
, “
Recent Developments in Turbine Blade Internal Cooling
,”
Heat Transfer in Gas Turbine Systems
, ed.,
R. J.
Goldstein
,
Ann. N.Y. Acad. Sci.
,
934
, pp.
162
178
.
18.
Incropera, F. P., and DeWitt, D. P., 1996. Fundamentals of Heat and Mass Transfer, 4th ed. Wiley, New York.
19.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng. (Am. Soc. Mech. Eng.), 75.
You do not currently have access to this content.