Local mass transfer measurements were conducted on the tip of a turbine blade in a five-blade linear cascade with a blade-centered configuration. The tip clearance levels ranged from 0.6 to 6.9% of blade chord. The effect of relative motion between the casing and the blade tip was simulated using a moving endwall made of neoprene mounted on the top of the wind tunnel. Data were obtained for a single Reynolds number of 2.7×105 based on cascade exit velocity and blade chord. Pressure measurements indicate that the effect of endwall motion on blade loading at a clearance of 0.6% of blade chord is to reduce the pressure gradients driving the tip leakage flow. With the introduction of endwall motion, there is a reduction of about 9% in mass transfer levels at a clearance of 0.6% of chord. This is presumably due to the tip leakage vortex coming closer to the suction side of the blade and ‘blocking the flow,’ leading to reduced tip gap velocities and hence lower mass transfer.

1.
Booth
,
T. C.
,
Dodge
,
P. R.
, and
Hepworth
,
H. K.
,
1982
. “
Rotor-tip Leakage: Part I- Basic Methodology
,”
ASME J. Eng. Power
,
104
, pp.
154
161
.
2.
Bunker, R. S., 2001. “A Review of Turbine Blade Tip Heat Transfer,” Proceedings, International Symposium on Heat Transfer in Gas Turbine Systems, ed., R. J. Goldstein, Annals of the New York Academy of Sciences, New York, Vol. 934, pp. 64–79.
3.
Graham
,
J. A. H.
,
1986
. “
Investigation of a Tip Clearance Cascade in a Water Analogy Rig
,”
ASME J. Eng. Gas Turbines Power
,
108
, pp.
38
46
.
4.
Sjo¨lander
,
S. A.
, and
Amrud
,
K. K.
,
1987
. “
Effects of Tip Clearance on Blade Loading in a Planar Cascade of Turbine Blades
,”
ASME J. Turbomach
,
109
, pp.
237
244
.
5.
Moore
,
J.
, and
Tilton
,
J. S.
,
1988
. “
Tip Leakage Flow in a Linear Turbine Cascade
,”
ASME J. Turbomach.
,
110
, pp.
18
26
.
6.
Morphis, G., and Bindon, J. P., 1988. “The Effects of Relative Motion, Blade Edge Radius and Gap Size on the Blade Tip Pressure Distribution in an Annular Turbine Cascade With Clearance,” ASME Paper 88-GT-256.
7.
Metzger
,
D. E.
, and
Rued
,
K.
,
1989
. “
Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips. Part I: Sink Flow Effects on Blade Pressure Sides
,”
ASME J. Turbomach.
,
111
, pp.
284
292
.
8.
Yaras
,
M. I.
, and
Sjo¨lander
,
S. A.
,
1992
. “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part I—Tip Gap Flow
,”
ASME J. Turbomach.
,
114
, pp.
652
659
.
9.
Yaras
,
M. I.
, and
Sjo¨lander
,
S. A.
,
1992
. “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades: Part II- Downstream Flow Field and Blade Loading
,”
ASME J. Turbomach.
,
114
, pp.
660
667
.
10.
Mayle, R. E., and Metzger, D. E., 1982. “Heat Transfer at the Tip of an Unshrouded Turbine Blade,” Proc. Seventh Int. Heat Transfer Conference, 3, pp. 87–92.
11.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
. “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
, pp.
502
507
.
12.
Chyu
,
M.-K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
,
1989
. “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Turbomach.
,
111
, pp.
131
138
.
13.
Rued
,
K.
, and
Metzger
,
D. E.
,
1989
. “
Influence of Turbine Clearance Gap Leakage on Passage Velocity and Heat Transfer Near Blade Tips. Part II: Source Flow Effects on Blade Suction Sides
,”
ASME J. Turbomach.
,
111
, pp.
293
300
.
14.
Kim
,
Y. W.
,
Downs
,
J. P.
,
Soechting
,
F. O.
,
Abdel-Messeh
,
W.
,
Steuber
,
G. D.
, and
Tanrikut
,
S.
,
1995
. “
A Summary of the Cooled Turbine-Blade Tip Heat Transfer and Film Cooling Effectiveness Investigations Performed by Dr. D. E. Metzger
,”
ASME J. Turbomach.
,
117
, pp.
1
11
.
15.
Kim
,
Y. W.
, and
Metzger
,
D. E.
,
1995
. “
Heat Transfer and Film Cooling Effectiveness on Film Cooled Turbine Blade Tip Models
,”
ASME J. Turbomach.
,
117
, pp.
12
21
.
16.
Bunker, R. S., Bailey, J. C., and Ameri, A. A., 1999. “Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part I: Experimental Results.” ASME Paper 99-GT-169.
17.
Teng
,
S.
,
Han
,
J.-C.
, and
Azad
,
G. S.
,
2001
. “
Detailed Heat Transfer Coefficient Distributions on a Large-Scale Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
,
123
(
4
), pp.
803
809
.
18.
Azad, G., Han, J.-C., and Boyle, R. J., 2000, “Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade,” ASME Paper 2000-GT-195.
19.
Azad, G., Han, J.-C., and Teng, S., 2000 “Heat Transfer and Pressure Distribution on a Gas Turbine Blade Tip,” ASME Paper 2000-GT-194.
20.
Jin, P., and Goldstein, R. J., 2002. “Local, Mass/Heat Transfer on a Turbine Blade Tip,” Proc., 9th Intl. Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, February 10–14.
21.
Chyu
,
M.-K.
,
Metzger
,
D. E.
, and
Hwan
,
C. L.
,
1987
. “
Heat Transfer in Shrouded Rectangular Cavities
,”
J. Thermophys. Heat Transfer
,
1
, pp.
247
252
.
22.
Goldstein
,
R. J.
, and
Cho
,
H. H.
,
1995
. “
A Review of Mass Transfer Measurements Using Naphthalene Sublimation
,”
Exp. Thermo Fluid Sci.
10
, pp.
416
434
.
23.
Srinivasan, V., 2000. “Effect of Simulated Rotation on the Mass/Heat Transfer From the Tip of a Turbine Blade,” Master’s thesis, University of Minnesota, Minneapolis, Minnesota.
You do not currently have access to this content.