Boundary layer separation, transition and reattachment have been studied experimentally under low-pressure turbine airfoil conditions. Cases with Reynolds numbers (Re) ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (9% inlet) free-stream turbulence levels. Mean and fluctuating velocity and intermittency profiles are presented for streamwise locations all along the airfoil, and turbulent shear stress profiles are provided for the downstream region where separation and transition occur. Higher Re or free-stream turbulence level moves transition upstream. Transition is initiated in the shear layer over the separation bubble and leads to rapid boundary layer reattachment. At the lowest Re, transition did not occur before the trailing edge, and the boundary layer did not reattach. Turbulent shear stress levels can remain low in spite of high free-stream turbulence and high fluctuating streamwise velocity in the shear layer. The beginning of a significant rise in the turbulent shear stress signals the beginning of transition. A slight rise in the turbulent shear stress near the trailing edge was noted even in those cases which did not undergo transition or reattachment. The present results provide detailed documentation of the boundary layer and extend the existing database to lower Re. The present results also serve as a baseline for an investigation of turbulence spectra in Part 2 of the present paper, and for ongoing work involving transition and separation control.

1.
Hourmouziadis, J., 1989, “Aerodynamic Design of Low Pressure Turbines,” AGARD Lecture Series, 167.
2.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
3.
Sharma, O. P., Ni, R. H., and Tanrikut, S., 1994, “Unsteady Flow in Turbines,” AGARD Lecture Series 195, Paper No. 5.
4.
Hodson, H. P., 1991, “Aspects of Unsteady Blade-Surface Boundary Layers and Transition in Axial Turbomachines,” Boundary Layers in Turbomachines, VKI Lecture Series 1991–2006.
5.
Wisler, D. C., 1998, “The Technical and Economic Relevance of Understanding Boundary Layer Transition in Gas Turbine Engines,” Minnowbrook II, 1997 Workshop on Boundary Layer Transition in Turbomachines, J. E. LaGraff and D. E. Ashpis, eds., NASA/CP-1998-206958, pp. 53–64.
6.
Curtis, E. M., Hodson, H. P., Banieghbal, M. R., Denton, J. D., Howell, R. J., and Harvey, N. W., 1996, “Development of Blade Profiles for Low-Pressure Turbine Applications,” ASME Paper 96-GT-358.
7.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4—LP Turbines
,”
ASME J. Turbomach.
,
119
, pp.
225
237
.
8.
Solomon, W. J., 2000, “Effects of Turbulence and Solidity on the Boundary Layer Development in a Low Pressure Turbine,” ASME Paper 2000-GT-0273.
9.
Gier, J., and Ardey, S., 2001, “On the Impact of Blade Count Reduction on Aerodynamic Performance and Loss Generation in a Three-Stage LP Turbine,” ASME Paper 2001-GT-0197.
10.
Hatman
,
A.
, and
Wang
,
T.
,
1999
, “
A Prediction Model for Separated Flow Transition
,”
ASME J. Turbomach.
,
121
, pp.
594
602
.
11.
Sohn
,
K. H.
,
DeWitt
,
K. J.
, and
Shyne
,
R. J.
,
2000
, “
Experimental Investigation of Boundary Layer Behavior in a Simulated Low Pressure Turbine
,”
ASME J. Fluids Eng.
,
122
, pp.
84
89
.
12.
Lou
,
W.
, and
Hourmouziadis
,
J.
,
2000
, “
Separation Bubbles Under Steady and Periodic-Unsteady Main Flow Conditions
,”
ASME J. Turbomach.
,
122
, pp.
634
643
.
13.
Volino
,
R. J.
, and
Hultgren
,
L. S.
,
2001
, “
Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions
,”
ASME J. Turbomach.
,
123
, pp.
189
197
.
14.
Yaras, M. I., 2001, “Measurements of the Effects of Pressure-Gradient History on Separation-Bubble Transition,” ASME Paper 2001-GT-0193.
15.
Murawski, C. G., Sondergaard, R., Rivir, R. B., Simon, T. W., Vafai, K., and Volino, R. J., 1997, “Experimental Study of the Unsteady Aerodynamics in a Linear Cascade with Low Reynolds Number Low Pressure Turbine Blades,” ASME Paper 97-GT-95.
16.
Qiu, S., and Simon, T. W., 1997, “An Experimental Investigation of Transition as Applied to Low Pressure Turbine Suction Surface Flows,” ASME Paper 97-GT-455.
17.
Simon, T. W., Qiu, S., and Yuan, K., 2000, “Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Conditions,” NASA/CR-2000-209957.
18.
Brunner, S., Fottner, L., and Schiffer, H.-P., 2000, “Comparison of Two Highly Loaded Low Pressure Turbine Cascades Under the Influence of Wake-Induced Transition,” ASME Paper 2000-GT-268.
19.
Stadtmu¨ller, P., Fottner, L., and Fiala, A., 2000, “Experimental and Numerical Investigation of Wake-Induced Transition on a Highly Loaded LP Turbine at Low Reynolds Numbers,” ASME Paper 2000-GT-0269.
20.
Howell
,
R. J.
,
Ramesh
,
O. N.
,
Hodson
,
H. P.
,
Harvey
,
N. W.
, and
Schulte
,
V.
,
2001
, “
High Lift and Aft-Loaded Profiles for Low-Pressure Turbines
,”
ASME J. Turbomach.
,
123
, pp.
181
188
.
21.
Kaszeta, R. W., Simon, T. W., and Ashpis, D. E., 2001, “Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes,” ASME Paper 2001-GT-195.
22.
Dorney, D. J., Ashpis, D. E., Halstead, D. E., and Wisler, D. C., 1999, “Study of Boundary Layer Development in a Two-Stage Low Pressure Turbine,” AIAA Paper 99-0742; also NASA TM-1999-208913.
23.
Chernobrovkin
,
A.
, and
Lakshminarayana
,
B.
,
1999
, “
Turbulence Modeling and Computation of Viscous Transitional Flow for Low Pressure Turbines
,”
ASME J. Fluids Eng.
,
121
, pp.
824
833
.
24.
Huang, P. G., and Xiong, G., 1998, “Transition and Turbulence Modeling of Low Pressure Turbine Flows,” AIAA Paper 98-0339.
25.
Thermann, H., Mu¨ller, M., and Niehuis, R., 2001, “Numerical Simulation of the Boundary Layer Transition in Turbomachinery Flows,” ASME Paper 2001-GT-0475.
26.
VanTreuren, K. W., Simon, T., von Koller, M., Byerley, A. R., Baughn, J. W., and Rivir, R., 2001, “Measurements in a Turbine Cascade Flow Under Ultra Low Reynolds Number Conditions,” ASME Paper 2001-GT-0164.
27.
Lake, J. P., King, P. I., and Rivir, R. B., 2000, “Low Reynolds Number Loss Reduction on Turbine Blades With Dimples and V-Grooves,” AIAA Paper 00-738.
28.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
,
2001
, “
Turbine Separation Control Using Pulsed Vortex Generator Jets
,”
ASME J. Turbomach.
,
123
, pp.
198
206
.
29.
Volino
,
R. J.
,
2002
, “
Separated Flow Transition under Simulated Low-Pressure Turbine Airfoil Conditions: Part 2—Turbulence Spectra
,”
ASME J. Turbomach.
,
124
, pp.
656
664
.
30.
Volino, R. J., Schultz, M. P., and Pratt, C. M., 2001, “Conditional Sampling in a Transitional Boundary Layer Under High Free-Stream Turbulence Conditions,” ASME Paper 2001-GT-0192.
31.
Chung, J. T., and Simon, T. W., 1990, “Three-Dimensional Flow Near the Blade/Endwall Junction of a Gas Turbine: Visualization in a Large-Scale Cascade Simulator,” ASME Paper 90-WA/HT-4.
32.
Aunapu
,
N. V.
,
Volino
,
R. J.
,
Flack
,
K. A.
, and
Stoddard
,
R. M.
,
2000
, “
Secondary Flow Measurements in a Turbine Passage With Endwall Flow Modification
,”
ASME J. Turbomach.
,
122
, pp.
651
658
.
33.
Volino
,
R. J.
, and
Simon
,
T. W.
,
1997
, “
Velocity and Temperature Profiles in Turbulent Boundary Layers Experiencing Streamwise Pressure Gradients
,”
ASME J. Heat Transfer
,
119
, pp.
433
439
.
34.
Wills
,
J. A. B.
,
1962
, “
The Correction of Hot-Wire Readings for Proximity to a Solid Boundary
,”
J. Fluid Mech.
,
12
, pp.
65
92
.
35.
Ligrani
,
P. M.
, and
Bradshaw
,
P.
,
1987
, “
Spatial Resolution and Measurement of Turbulence in the Viscous Sublayer Using Subminiature Hot-Wire Probes
,”
Exp. Fluids
,
5
, pp.
407
417
.
36.
Ligrani
,
P. M.
, and
Bradshaw
,
P.
,
1987
, “
Subminiature Hot-Wire Sensors: Development and Use
,”
J. Phys. E
,
20
, pp.
323
332
.
37.
Ligrani
,
P. M.
,
Westphal
,
R. V.
, and
Lemos
,
F. R.
,
1989
, “
Fabrication and Testing of Subminiature Multi-Sensor Hot-Wire Probes
,”
J. Phys. E
,
22
, pp.
262
268
.
38.
Bradshaw
,
P.
,
1994
, “
Turbulence: the Chief Outstanding Difficulty of Our Subject
,”
Exp. Fluids
,
16
, pp.
203
216
.
39.
Volino, R. J., 2002, “An Investigation of the Scales in Transitional Boundary Layers Under High Free-Stream Turbulence Conditions,” ASME Paper GT-2002-30233.
40.
Thwaites
,
B.
,
1949
, “
Approximate Calculations of the Laminar Boundary Layer
,”
Aeronaut. Q.
,
7
, pp.
245
280
.
41.
Davis, R. L., Carter, J. E., and Reshotko, E., 1985, “Analysis of Transitional Separation Bubbles on Infinite Swept Wings,” AIAA Paper 85-1685.
You do not currently have access to this content.